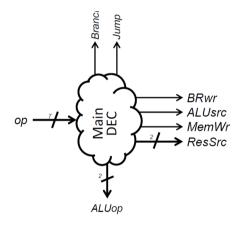
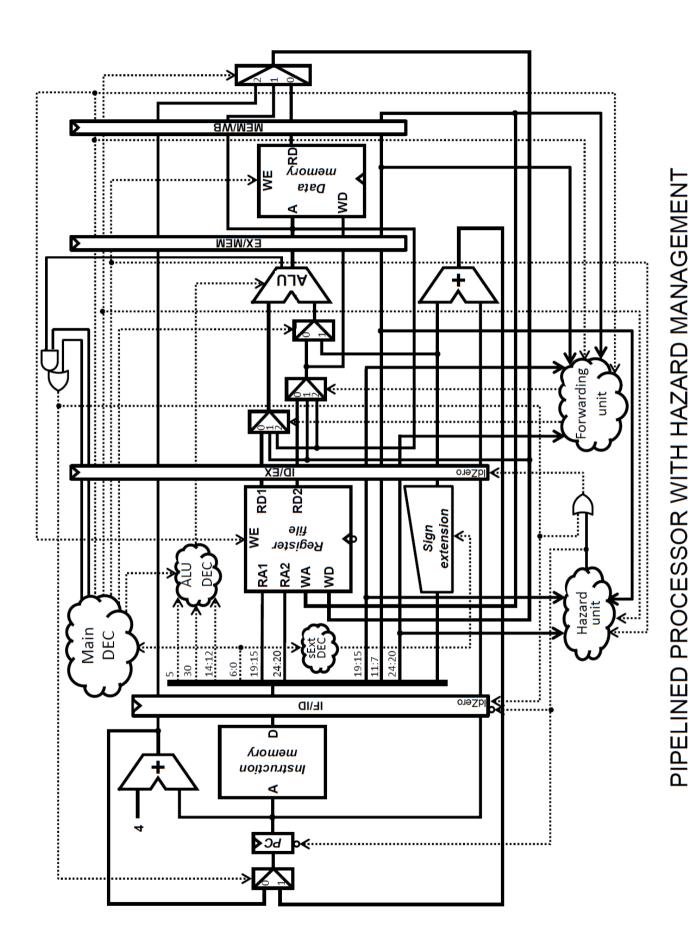
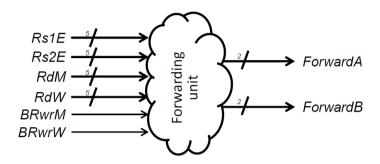


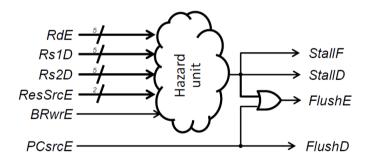
Introduction to Computers II PIPELINED MICROARCHITECTURE




ALUop	op ₅	funct7 ₅	funct3	ALUctr	
00 ^(add)	Χ	Х	XXX	000 ^(A + B)	
01 ^(subtract)	Χ	Х	XXX	001 ^(A - B)	
10 ^(operate)	0	Х	000 ^(addi)	000 ^(A + B)	
10 ^(operate)	1	0	000 ^(add)	000 ^(A + B)	
10 ^(operate)	1	1	000 ^(sub)	001 ^(A - B)	
10 ^(operate)	Χ	Х	010 ^(slt/slti)	101 ^(A < B)	
10 ^(operate)	Х	Х	110 ^(or/ori)	011 ^(A B)	
10 ^(operate)	Χ	Х	111 ^(and/andi)	010 ^(A & B)	



Ор	ImmSrc		
0000011 ^(lw)	00 ^(I-type)		
0100011 ^(sw)	01 ^(S-type)		
0010011 ^(I-type)	00 ^(I-type)		
0110011 ^(R-type)	-		
1100011 ^(beq)	10 ^(B-type)		
1101111 ^(jal)	11 ^(J-type)		



ор	Branch	Jump	BRwr	ALUsrc	ALUop	MemWr	ResSrc
0000011 ^(lw)	0	0	1	1	OO ^(add)	0	00
0100011 ^(sw)	0	0	0	1	OO ^(add)	1	-
0010011 ^(I-type)	0	0	1	1	10 ^(operate)	0	01
0110011 ^(R-type)	0	0	1	0	10 ^(operate)	0	01
1100011 ^(beq)	1	0	0	0	01 ^(subtract)	0	_
1101111 ^(jal)	0	1	1	-	-	0	10


```
 if ( (Rs1E \neq 0) \& BRwrM \& (Rs1E = RdM) ) then \\ elsif ( (Rs1E \neq 0) \& BRwrW \& (Rs1E = RdW) ) then \\ else \\ if ( (Rs2E \neq 0) \& BRwrM & (Rs2E = RdM) ) then \\ elsif ( (Rs2E \neq 0) \& BRwrM & (Rs2E = RdM) ) then \\ elsif ( (Rs2E \neq 0) \& BRwrW & (Rs2E = RdW) ) then \\ elsif ( (Rs2E \neq 0) \& BRwrW & (Rs2E = RdW) ) then \\ else \\ (ForwardB \leftarrow 00^{(forwarding WB)}) \\ (ForwardB \leftarrow 00^{(no forwarding WB)}) \\ (ForwardB \leftarrow 00^{(no forwarding)})
```

