

INTRODUCTION TO COMPUTERS II PIPELINED MICROARCHITECTURE: HAZARDS

Summary of hazards

- No structural hazards.
- There is a **data hazard** when executing an instruction with a source register that is the destination register of any of the 3 previous instructions.

	1	2	3	4	5	6	7	8
addi t1,t2,5	IF	ID	EX	М	WB			
add t3,t1,t2		IF	ID	EX	М	WB		
addi t4,t1,15			IF	ID	EX	М	WB	
add t5,t1,t1				IF	ID	EX	М	WB

• There is a **control hazard** when executing a jal or beg instruction.

	1	2	3	4	5	6
beq t1,t2,L1	IF	ID	EX	М	WB	
???		IF	ID	EX	М	WB

Pipelined processor without hazard management

(RF write at the <u>end</u> of the cycle)

- All hazards must be solved by software.
- **Data hazards**: depending on the case, insert 1, 2 or 3 **nop** instructions between the instruction that writes the register and the one that reads it.

	1	2	3	4	5	6	7	8	9
addi t1,t2,5	IF	ID	EX	М	WB				
nop		IF	ID	EX	М	WB			
nop			IF	ID	EX	М	WB		
nop				IF	ID	EX	М	WB	
add t3,t1,t2					IF	ID	EX	М	WB

• **Control hazards**: insert 2 **nop** instructions after each branch instruction.

	1	2	3	4	5	6	7	8
beq t1,t2,L1	IF	ID	EX	М	WB			
nop		IF	ID	EX	М	WB		
nop			IF	ID	EX	М	WB	
L1:addi t3,t1,1				IF	ID	EX	М	WB

Introduction to Computers II (15/01/23 version)

Pipelined processor with hazard management

(*RF* write in the <u>middle</u> of the cycle, forwarding unit and hazard unit with not-taken branch prediction)

- All hazards are solved by hardware.
- Rules to solve data hazards:
 - 1. If the instruction in EX has a source register that is the destination register of the instruction in MEM: the data is forwarded from MEM to EX.
 - 2. If the instruction in EX has a source register that is the destination register of the instruction in WB: the data is forwarded from WB to EX.
 - 3. If the instruction in EX has a source register that is the destination register of both the instructions in MEM and WB: the data is forwarded from MEM to EX.
 - 4. If the instruction in ID has a source register that is the destination register of the instruction in WB: the data is read from the RF since it has been written in the middle of the cycle.
 - 5. If the instruction is **lw** and has a destination register that is the source register of the instruction in ID: the instructions in IF and ID are stalled (the others advance as usual). There is a penalty of a one-cycle delay.

	1	2	3	4	5	6	7	8	9	10	11	12
addi t1,t2,5	IF	ID	EX—	M	η₩₿γ							
<pre>sw t1,0(t0)</pre>		IF	ID	*EX	м	WB						
addi t4,t1,15			IF	ID	t ▼¥X	М	WB					
add t4,t1,t1				IF	✓ ^{t1} ID	EX—	М	WB				
lw t5,25(t4)					IF	ID	*EX	м-	WB			
add t1,t5,t1						IF	ID	ID®	t5 EX	М	WB	
addi t0,t0,1							IF	IF®	ID	EX	М	WB

- Rules to solve control hazards:
 - 1. If the instruction in EX is jal or beq and the branch is taken: the instructions in IF and ID are flushed. There is a penalty of a two-cycle delay.
 - 2. If the instruction in EX is beq and the branch is not taken: the instructions advance as usual.

		1	2	3	4	5	6	7	8	9	10	11
jal x0,L1	(salta)	IF	ID	EX	М	WB						
addi t1,x0,5			IF	ID	\times							
add t3,t1,t2				IF	\times							
L1:beq t3,t1,L2	(no salta)				IF	ID	EX	М	WB			
<pre>sub t2,t1,t3</pre>						IF	ID	EX	М	WB		
add t3,t1,t2							IF	ID	EX	М	WB	
addi t1,t0,-1								IF	ID	EX	М	WB

Introduction to Computers II (15/01/23 version)

Pipelined microarchitecture: hazards / page 2

OTHER ALTERNATIVE PIPELINED MICROARCHITECTURES

Pipelined processor with optimized forwarding

(specific management of $lw \rightarrow sw$)

- The following rules to solve **data hazards** are added to the previous ones:
 - 6. If the instruction in EX is **1w** and has a destination register that is also the source register of a **sw** instruction in ID: no instruction is stalled.
 - 7. If the instruction in MEM is **sw** and has a source register that is also the destination register of a **1w** instruction in WB: the data is forwarded from WB to MEM.

	1	2	3	4	5	6
lw s3,16(s0)	IF	ID	EX	М —	WB	
sw s3,20(s0)		IF	ID	EX	• M	WB

Pipelined processor with hazard management through pipeline stalling

(RF write in the middle of the cycle and hazard unit through pipeline stalling)

- All hazards are solved by hardware.
- Rules to solve data hazards:
 - 1. If the instruction in ID has a source register that is also the destination register of the instructions in EX or MEM: the instructions in IF and ID are stalled (the others advance as usual). Depending on the case, there is a penalty of 1- or 2-cycle delay.
 - 2. If the instruction in ID has a source register that is also the destination register of the instruction in WB: the data is read from the RF since it has been written in the middle of the cycle.
- Rules to solve **control hazards**:
 - 1. If the instruction in ID or EX is jal or beq: the instruction in IF is stalled (the others advance as usual). There is a penalty of a two-cycle delay.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
addi t1,t2,5	IF	ID	EX	М	WB									
add t3,t1,t2		IF	ID	ID ^{step}	ID	EX	М	WB						
addi t4,t1,15			IF	IF	IF	ID	EX	М	WB					
beq t1,t2,L2						IF	ID	EX	М	WB				
lw t5,25(t4)							IF	IF	IF	ID	EX	М	WB	
add t1,t5,t1										IF	ID	EX	М	WB

Pipelined processor without hazard management

(RF write in the <u>middle</u> of the cycle)

- All hazards are solved by software.
- **Data hazards**: depending on the case, insert 1 or 2 **nop** instructions between the instruction that writes the register and the one that reads it.

	1	2	3	4	5	6	7	8
addi t1,t2,5	IF	ID	EX	М	WB/			
nop		IF	ID	EX	м	WB		
nop			IF	ID	ĘΧ	М	WB	
add t3,t1,t2				IF	ID	EX	М	WB

• **Control hazards**: insert 2 **nop** instructions after each branch instruction.

	1	2	3	4	5	6	7	8
beq t1,t2,L1	IF	ID	EX	М	WB			
nop		IF	ID	EX	м	WB		
nop			IF	ID	EX	М	WB	
L1:addi t3,t1,1				IF	ID	EX	М	WB