

Introduction to Computers II - Exam June 29th, 2023

RGB LED strips are devices widely used in lightning applications. These can be controlled from a RISC-V processor, assigning consecutive memory positions to each of the leds. For example, if the address of the first led is 0x0, the address of the second one will be 0x4 and so on. In these addresses, 32 bits are written, which encode the chosen color.

In order to change the color of the led strip, all memory positions have to be written in a consecutive way. The following RISC-V code is provided. The code contains the set_led_colors function that receives three arguments:

- The memory address that contains the data (colors) that will be copied to the leds (D_c)
- The initial memory address assigned to the leds (D_I)
- The size of the led strip (N)

In short, the function copies one array (D_c) into another one (D_l) , both with size N:

```
.equ N, 8
 .data
      COLORS A:.word
                           0x00ff0000, 0x00ff0000, 0x000000ff, 0x00ffffff,
                           0x00ffffff , 0x00000ff, 0x0000ff00, 0x0000ff00
      COLORS_B:.word
                           0x000000ff, 0x000000ff, 0x000000ff, 0x00ffffff,
                           0x00ffffff, 0x00ff0000, 0x00ff0000, 0x00ff0000
 .bss
      LEDS: .space 4* N
 .text
 #SET LED COLORS function
 set_led_colors:
 loop:
                                # color loaded
      lw t1, 0(a0)
      sw t1, 0(a1)
                                # color saved
      addi a0 , a0 , 4
                                # source array address incremented
      addi a1 , a1 , 4
                                # destination array address incremented
                                # loop index decremented
      addi a2 , a2 , -1
      bne a2, zero, loop
                                # termination checked
 end_loop :
                                # return
      ret
# MAIN function
.global main
main :
      # two color patterns are alternated
main loop:
      # A pattern call
      la a0, COLORS A
      la a1, LEDS
      lia2, N
      j set led colors
      # B pattern call
      la a0, COLORS B
      j set led colors
      # loop is repeated forever
      j main loop
```


Facultad de Informática Universidad Complutense de Madrid

Answer the following questions:

- 1. ASM [0.4pt] The main function code is not correct. Identify why and propose a solution.
- 2. ASM [0.3pt] Let us assume that the .text section is located in address 0x0200, and, by mistake, the set_led_colors function is called with a1=0x0200. What happens?
- 3. ASM [0.3pt] Translate the addi a0, a0, 4 and addi a1, a1, 4 instructions into machine code and indicate the difference in their hexadecimal encodings.
- 4. **CPU** [1pt] The last instruction of the loop, bne a2, zero, loop, is executed in the single-cycle processor data path. Indicate the values taken by the following signals, in the first and last iterations, highlighting the observed differences. NOTE: Assume that .text is located in 0x200.

Iteration	PCSrc	PC input	BRwr	ALUsrc	Zero	ALU output	MemWr	ResSrc
First								
Last								

- 5. **CPU** [1pt] The set_led_colors function (with a2=16) is executed in a multicycle processor, which takes a total of 387 cycles. If we assume that the lw and sw instructions take twice as many cycles as addi, and that the rest of instructions take 3 cycles always, calculate how long it would take to execute the lw, sw and addi instructions, individually.
- 6. **CPU [1pt]** How much larger should the previous multicycle processor frequency be respect to a single-cycle processor, so that the function takes less time to execute? Why?
- 7. **CPU** [1.5pt] Let us assume that a loop iteration of set_led_colors is executed in the RISC-V pipelined processor. The processor uses forwarding to handle data hazards (with pipeline stall when needed), it also uses not-taken branch prediction and the register file is written at the middle of the cycle.
 - a) Indicate the hazards produced during the iteration.
 - b) Provide the execution diagram indicating the pipeline stalls and forwarding operations (if any).
 - c) How many cycles are needed to execute the loop iteration?
- 8. **CPU [0.5pt]** Calculate and discuss what happens with the CPI of the previous pipelined processor in the set_led_colors function, when calling it with a low and high value (e.g. 2 y 16) in a2. Which one would produce a lower CPU? Why?
- 9. **CPU** [1pt] If the forwarding unit is removed from the previous processor and the pipepine is not stalled in the hazards, there would be operations executed with the wrong operands, since these could not be forwarded.
 - a) Reorder the loop code of set_led_colors so that the final result is correct.
 - b) Calculate the number of cycles of the reordered function if it is called with a2=2.
- 10. **MEM [1pt]** We have a RISC-V multicycle processor with a 64-KB main memory, divided in 2048 blocks. The cache memory has 128B, with direct mapping. Indicate the address format of both the main memory and the cache.
- 11. **MEM [2pt]** The .data section is placed in address 0x2000 and after that the .bss section. The .text section is placed in address 0x3020. Fill the following table, considering that there is a single cache for data and instructions:

ltem	Initial addr	Final addr	MM block	tag	CM block
COLORS_A					
COLORS_B					
LEDS					
set_led_colors					

We want to analyze the behavior of the cache during the first call of the set_led_colors function (a0=addr(COLORS_A)).

a) Write the sequence of memory addresses generated by the multicycle processor when executing the first and second loop iterations, indicating the corresponding MM and CM blocks.

b) Indicate the number of accesses and misses produced during the whole execution of the function in the multicycle processor, calculating the miss rate.

c) If the hit time is t_h = 1ns and the miss penalty time is t_p = 10ns, calculate the average memory access time T_{MEM} .

Facultad de Informática Universidad Complutense de Madrid

31 25	24 20	19 15	14 12	11 7	6 0	
funct7	rs2	rs1	funct3	rd	ор	R-type
imm ₁	£:0	rs1	funct3	rd	ор	I-type
imm _{11:5}	rs2	rs1	funct3	imm _{4:0}	ор	S-type
imm _{12,10:5}	rs2	rs1	funct3	imm _{4:1,11}	ор	B-type
	imm _{31:12}	rd	ор	U-type		
i	mm _{20,10:1,11,} :	rd	ор	J-type		

ор	funct3	funct7*	Instruction	Туре
	000	-	addi	I
	001	0000000*	slli	T
	010	-	slti	I.
0010011	011	- sltiu		I
	100	-	xori	I.
	101	0000000*	srli	T
	101	0100000*	srai	I.
	110	-	ori	I
	111	-	andi	1

Name Number Code zero x0 00000 ra x1 0001 sp x2 00010 gp x3 00011 tp x4 00100 t0 x5 00101 t1 x6 00110 t2 x7 00111 s0/fp x8 01000 s1 x9 01011 a2 x12 01101 a3 x13 01101 a4 x14 01110 a5 x15 01111				
zero x0 00000 ra x1 0001 sp x2 00010 gp x3 00011 tp x4 00100 t0 x5 00101 t1 x6 00110 t2 x7 00111 s0/fp x8 01000 s1 x9 01001 a0 x10 01010 a1 x11 01011 a2 x12 01100 a3 x13 01101 a4 x14 01110	Name	Number	Code	
ra x1 00001 sp x2 00010 gp x3 00011 tp x4 00100 t0 x5 00101 t1 x6 00110 t2 x7 00111 s0/fp x8 01000 s1 x9 01001 a0 x10 01010 a1 x11 01011 a2 x12 01100 a3 x13 01101 a4 x14 01110	zero	x0	00000	
sp x2 00010 gp x3 00011 tp x4 00100 t0 x5 00101 t1 x6 00110 t2 x7 00111 s0/fp x8 01000 s1 x9 01001 a0 x10 01010 a1 x11 01011 a2 x12 01100 a3 x13 01101 a4 x14 01110	ra	x1	00001	
gpx300011tpx400100t0x500101t1x600110t2x700111s0/fpx801000s1x901001a0x1001010a1x1101011a2x1201100a3x1301101a4x1401110a5x1501111	sp	x2	00010	
tpx400100t0x500101t1x600110t2x700111s0/fpx801000s1x901001a0x1001010a1x1101011a2x1201100a3x1301101a4x1401110a5x1501111	gp	x3	00011	
t0x500101t1x600110t2x700111s0/fpx801000s1x901001a0x1001010a1x1101011a2x1201100a3x1301101a4x1401110a5x1501111	tp	x4	00100	
t1x600110t2x700111s0/fpx801000s1x901001a0x1001010a1x1101011a2x1201100a3x1301101a4x1401110a5x1501111	t0	x5	00101	
t2x700111s0/fpx801000s1x901001a0x1001010a1x1101011a2x1201100a3x1301101a4x1401110a5x1501111	t1	x6	00110	
s0/fp x8 01000 s1 x9 01001 a0 x10 01010 a1 x11 01011 a2 x12 01100 a3 x13 01101 a4 x14 01110 a5 x15 01111	t2	x7	00111	
s1 x9 01001 a0 x10 01010 a1 x11 01011 a2 x12 01100 a3 x13 01101 a4 x14 01110 a5 x15 01111	s0/fp	x8	01000	
a0 x10 01010 a1 x11 01011 a2 x12 01100 a3 x13 01101 a4 x14 01110 a5 x15 01111	s1	x9	01001	
a1 x11 01011 a2 x12 01100 a3 x13 01101 a4 x14 01110 a5 x15 01111	a0	x10	01010	
a2 x12 01100 a3 x13 01101 a4 x14 01110 a5 x15 01111	al	x11	01011	
a3 x13 01101 a4 x14 01110 a5 x15 01111	a2	x12	01100	
a4 x14 01110 a5 x15 01111	a3	x13	01101	
a5 x15 01111	a4	x14	01110	
	a5	x15	01111	

Name	Number	Code
a6	x16	10000
a7	x17	10001
s2	x18	10010
s3	x19	10011
s4	x20	10100
s5	x21	10101
s6	x22	10110
s7	x23	10111
s8	x24	11000
s9	x25	11001
s10	x26	11010
s11	x27	11011
t3	x28	11100
t4	x29	11101
t5	x30	11110
t6	x31	11111