

Facultad de Informática
Universidad Complutense de Madrid

Introduction to Computers II Lab 5

INTRODUCTION TO COMPUTERS II

LAB 5: MATRICES

The elements of a matrix are stored in memory ordered by rows, that is, from left to right
and from top to bottom in consecutive memory addresses. Thus, a matrix M×N is stored as
if it were a vector of M·N components, where the first m elements correspond to the first
row of the matrix, the next m elements to the second row, and so on. For example, the
following 3×4 matrix is stored in memory as a vector of 12 components.

0 1 2 3
4 5 6 7
8 9 10 11

m: .word 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

The following assembly fragment loads the element m[1][1] of the matrix.

la s1, m //s1 holds the base address
lw a0, 20(s1) //s1 + 20 gives the effective address

//a0 now contains a 5

To begin, develop a function in RISC-V assembly that copies a square matrix into another
according to the following algorithm.

void matrixCopy(int n, int x[n][n], int z[n][n]) {
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 z[i][j] = x[i][j];
}

 Next, develop a function in RISC-V assembly that multiplies two square matrices of the
same dimension according to the following algorithm. In this function, use the mul
instruction to multiply values.

void matrixMul(int n, int x[n][n], int y[n][n], int z[n][n]) {
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++) {
 z[i][j] = 0;
 for (int k = 0; k < n; k++)
 z[i][j] = z[i][j] + x[i][k] * y[k][j];
 }
}

 Introduction to Computers II Lab 5

 Finally, develop a function in RISC-V assembly that calculates the power e of a square
matrix x according to the following algorithm. The space for the auxiliary matrix aux (since
it is a local variable) should be created on the stack above the saved registers and should be
removed before restoring them. It is not necessary to use the fp register; using sp as the
base register for aux is sufficient.

void matrixPow(int n, int x[n][n], int e, int z[n][n]) {
 int aux[n][n];

for (int j=0; j<n ; j++) //initializes z with the identity matrix

for (int k=0; k<n ; k++)
 if (j==k)

 z[j][k] = 1;
 else
 z[j][k] = 0;

 for (int i = 1; i <= e; i++) {
 matrixMul(n, x, z, aux);
 matrixCopy(n, aux, z);
 }
}

To test the correct functionality of the previous functions, use the following C program,
which, given a directed graph represented by its adjacency matrix, calculates for a pair of
nodes the number of different paths connecting them with exactly a given number of steps
(transitions). You do not have to translate this to assembly, use it directly in C.

#define N 5 //number of nodes in the graph
#define STEPS 3 //number of steps (transitions) in the path
#define ORG 0 //source node
#define DST 3 //destination node

extern void matrixPow(int n, int [n][n], int, int [n][n]);

int graph[N][N] = //adjacency matrix of the graph
{
 {0, 1, 1, 0, 0},
 {0, 0, 1, 0, 0},
 {1, 0, 0, 0, 1},
 {1, 0, 1, 0, 1},
 {0, 0, 0, 1, 1}
};
int z[N][N]; //result matrix of the algorithm
int paths;

void main() {

 matrixPow(N, graph, STEPS, z);
 paths = z[ORG][DST];

 while(1);
}

 Introduction to Computers II Lab 5

In this program, the adjacency matrix graph represents the following directed graph:

 destination node
 0 1 2 3 4

so
ur

ce
 n

od
e 0 0 1 1 0 0

1 0 0 1 0 0
2 1 0 0 0 1
3 1 0 1 0 1
4 0 0 0 1 1

Running the program with the given data results in the variable paths taking the value
1, since there is exactly one path between node 0 and node 3 that passes through exactly 3
transitions. The resulting auxiliary matrix z (which, for each pair of nodes, calculates the
number of different paths with 3 transitions connecting them) is as follows:

 destination node
 0 1 2 3 4

so
ur

ce
 n

od
e 0 1 1 1 1 2

1 0 1 1 1 1
2 2 0 2 1 3
3 2 1 3 2 4
4 2 1 2 2 4

However, it is recommended that, to simplify the debugging of the assembly functions,
you modify the provided C program and test each of them individually with different example
matrices.

0

12

3

4

0

1 2

3

4

