

Introduction to computers II LAB 5: MATRICES

The elements of a matrix are stored in memory ordered by rows, that is, from left to right and from top to bottom in consecutive memory addresses. Thus, a matrix $M \times N$ is stored as if it were a vector of $M \cdot N$ components, where the first m elements correspond to the first row of the matrix, the next m elements to the second row, and so on. For example, the following 3×4 matrix is stored in memory as a vector of 12 components.

0	1	2	3
4	5	6	7
8	9	10	11

m: .word 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

The following assembly fragment loads the element m[1][1] of the matrix.

la	s1,	m	//s1	hc	olds	s the	base	address	
lw	a0,	20(s1)	//s1	+	20	gives	s the	effective	address
			//a0	nc	w c	contai	ins a	5	

To begin, <u>develop a function in RISC-V assembly</u> that copies a square matrix into another according to the following algorithm.

```
void matrixCopy(int n, int x[n][n], int z[n][n]) {
   for (int i = 0; i < n; i++)
      for (int j = 0; j < n; j++)
            z[i][j] = x[i][j];
}</pre>
```

Next, <u>develop a function in RISC-V assembly</u> that multiplies two square matrices of the same dimension according to the following algorithm. In this function, use the multiply instruction to multiply values.

Finally, <u>develop a function in RISC-V assembly</u> that calculates the power \mathbf{e} of a square matrix \mathbf{x} according to the following algorithm. The space for the auxiliary matrix \mathbf{aux} (since it is a local variable) should be created on the stack above the saved registers and should be removed before restoring them. It is not necessary to use the \mathbf{fp} register; using \mathbf{sp} as the base register for \mathbf{aux} is sufficient.

```
void matrixPow(int n, int x[n][n], int e, int z[n][n]) {
    int aux[n][n];
    for (int j=0; j<n ; j++) //initializes z with the identity matrix
        for (int k=0; k<n ; k++)
        if (j==k)
            z[j][k] = 1;
        else
            z[j][k] = 0;
    for (int i = 1; i <= e; i++) {
        matrixMul(n, x, z, aux);
        matrixCopy(n, aux, z);
    }
}</pre>
```

To test the correct functionality of the previous functions, use the following C program, which, given a directed graph represented by its adjacency matrix, calculates for a pair of nodes the number of different paths connecting them with exactly a given number of steps (transitions). You do not have to translate this to assembly, use it directly in <u>C</u>.

```
#define N
              5
                     //number of nodes in the graph
#define STEPS 3
                     //number of steps (transitions) in the path
#define ORG 0
                     //source node
#define DST
              3
                     //destination node
extern void matrixPow(int n, int [n][n], int, int [n][n]);
int graph[N][N] = //adjacency matrix of the graph
{
    \{0, 1, 1, 0, 0\},\
    \{0, 0, 1, 0, 0\},\
    \{1, 0, 0, 0, 1\},\
    \{1, 0, 1, 0, 1\},\
    \{0, 0, 0, 1, 1\}
};
int z[N][N];
                    //result matrix of the algorithm
int paths;
void main() {
    matrixPow(N, graph, STEPS, z);
    paths = z[ORG][DST];
   while(1);
}
```

In this program, the adjacency matrix graph represents the following directed graph:

Running the program with the given data results in the variable **paths** taking the value 1, since there is exactly one path between node 0 and node 3 that passes through exactly 3 transitions. The resulting auxiliary matrix z (which, for each pair of nodes, calculates the number of different paths with 3 transitions connecting them) is as follows:

destination node						-3
	0	1	2	3	4	
0	1	1	1	1	2	
1	0	1	1	1	1	
2	2	0	2	1	3	
3	2	1	3	2	4	
4	2	1	2	2	4	
	0 1 2 3 4	d 0 1 1 2 2 3 2 4 2	destin 0 1 1 0 2 2 0 3 2 1 4 2 1	destination 0 1 2 0 1 1 1 1 0 1 1 2 2 0 2 3 2 1 3 4 2 1 2	destination not 0 1 2 3 0 1 1 1 1 1 0 1 1 1 2 2 0 2 1 3 2 1 3 2 4 2 1 2 2	destination node 0 1 2 3 4 0 1 1 1 1 2 1 0 1 1 1 1 1 2 2 0 2 1 3 3 3 2 1 3 2 4 4 2 1 2 2 4

However, it is recommended that, to simplify the debugging of the assembly functions, you modify the provided C program and test each of them individually with different example matrices.