Module 2:
Processor architecture

Introduction to computers Il

José Manuel Mendias Cuadros
Dpto. Arquitectura de Computadores y Automatica
Universidad Complutense de Madrid

Outline

v" The RISC-V architecture.
v’ Instructions and data.

15/01/23 version

v Memory model.

v’ Registers.

v Addressing modes.

v Instruction set.

v' Extensions.

v" RISC vs. CISC architectures.

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

module 2:

These slides are based on:
» S.L. Harris and D. Harris. Digital Design and Computer Architecture. RISC-V Edition.
e D.A. Patterson and J.L. Hennessy. Computer Organization and Design. RISC-V Edition.

The RISC-V architecture

" RISC-V ISA (Instruction Set Architecture) is an architecture:

O Open, not proprietary and in evolution.

15/01/23 version

O Originally designed at UC Berkeley in 2010.
O Currently coordinated by the RISC-V International consortium.

" Jtis a RISC-type architecture (Reduced Instruction Set Computer), and thus:
It has a reduced set of simple instructions.

Only the load and store instructions can access memory.
The rest of instructions work with data stored in registers.
It has a large number of general-purpose registers.

It has a reduced set of addressing modes.

O O O O O O

Instructions has a fixed size, with a reduced number of formats.

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

module 2:

" We will study the RV32I base set with the RVM extension.
O 32-bit integer data and 32-bit instructions (RV32l).
O With integer multiplication and division (RVM).

15/01/23 version

module 2:

L
S
=
Q
£
S
I
S
o
Q
\
w
Q
S
o
Q

Instructions and data

All RISC-V instructions have 32 bits.

RISC-V instructions operate with 32-bit data or addresses.

O Data are integer numbers (signed) or natural numbers (unsigned), encoded
in two’s complement or pure binary, respectively.

O Addresses are natural numbers encoded in pure binary.

However, it can work with smaller-width numbers:
0 Typically, they are extended to 32 bits before operating with them.

O Depending on the case, they will be sign-extended (sExt) or zero-extended
(zExt).

The most common data sizes are:
0 Word: 32 bits.
O Half word: 16 bits.
O Byte: 8 bits.

Memory model

" |t consists of a 4-GiB RAM main memory (232x8b = 239x32b):
O 32-bit data and address buses.
O Byte-addressable (each byte has a unique address).
(0)
(0)

15/01/23 version

It contains 8, 16 and 32-bit data and 32-bit instructions.
All of them are aligned and with little-endian organization.

]
..........

........
.......
. L

(3 vy
[N e
[e
. .
. o,y
[N .,
.]
. -

This indicates alignment error:

the provided address does not

correspond to a data with the
32 requested width

This indicates if access is to a byte, a
half word or a word

|
[oX

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

module 2:

WE OE CE RAM enable inputs

Memory model

Alignment

" In the RISC-V memory, information is aligned, i.e., there are location
constraints depending on its size.
O Byte: it can be located in any address
0 Half word: it can only be located in multiple-of-2 addresses (even).
O Word: it can only be located in multiple-of-4 addresses
* This applies to 32-bit data and instructions.
O In general, N-byte data must be located in multiple-of-N addresses.
O When different-size data are stored consecutively, empty gaps are created.

15/01/23 version

a1 w2 43 Ak 40 s sz a2
byte 0x24 3¢000000 | 24 %%% 3¢000000 | 24 3b257a

word 0x3b257a02 3c000004 3b257a02 3c000004 | 02 3e27

% word 0x3e27 3000008 | 3e27 [/777) 3c000008 | 6ds23 Y
word 0x01c6d823 3c00000c 01c6d823 3c00000¢c 7////////////////////////A

RISC-V: Aligned data Not-aligned data

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

module 2:

Memory model

Organization

" |n the RISC-V memory, the word/half word bytes follow a little-endian
organization:

O The least significant byte is located at the lowest address, i.e., the data
address coincides with its least significant byte address.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
~—

O Bits within the byte keep the usual organization.

® Other processors can follow a big-endian organization:

O The most significant byte is located at the lowest address, i.e., the data
address coincides with its most significant byte address.

v

>

g

add 40 41 42 43 Add 0 41
zg byte 0x24 3c000000 | 24 %////////A 3c000000 | 24 7///// //
3 8 word 0x3b257a02 | 3c000004 | 02 | 7a 3b | 3c000004 | 3b | 25

s viword 0x3e27 3¢000008 | 27 | 3e /////% 3c000008 | 3e | 27 //////

word 0x01c6d823 3c00000c | 23 ds 01 3c00000c | 01 c6

RISC-V: Little-Endian Big-Endian

Registers

" All data in a program are stored in memory, but in order to be used by
RISC-V, they must be previously loaded in registers.

15/01/23 version

" ARISC-V has 32 general-purpose registers, each one with 32 bits.

O They can be used interchangeably.

O They are numbered from x0 to x31.

O The x0 register, always contains constant 0, and any write operation in this
register has no effect.

O However, in order to simplify programming, each register has an alias that
allows remembering its most conventional use.

" Besides, RISC-V has a special register, PC (Program Counter)
O It contains the memory address of the instruction in execution.

O After this instruction is executed, the PC is incremented +4 (each instruction
takes 4Bytes)

* Except if the executed instruction is a branch

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

module 2:

Registers

--
* *

§ #Reg. | Alias Description
g x0 zZero zero
- x1 ra return address
x2 sp stack pointer
x3 gp global pointer
x4 tp thread pointer
x5...x7 t0...t2 temporary register
x8 s0/£fp saved register / frame pointer
x9 sl saved register

x10...x17 al...a7 argument register

x18...x27 s2...s11 saved register

Processor architecture

module 2:

x28...x31 t3...t6 temporary register

. *
--

alias must be used always when programming in assembly

module 2:

15/01/23 version

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

Addressing modes

The addressing modes are the mechanisms to indicate where the
instruction operands are located

O They indicate the data location and how to get them.

The instruction operands can be located in:
O The instruction itself.
O A processor register, indicating which one.
O The computer memory, indicating its memory address.

There are only 4 addressing modes in RISC-V:
0 Immediate addressing: the operand is a constant located in the instruction.
O Register addressing: the operand is located in a processor register.
O Base addressing: the operand is located in the memory.

* Its address is obtained by adding the content of a base register plus an offset.
O PC-relative addressing: The operand is an address (branch target).
* Itis obtained by adding the content of the PC plus an offset.

Addressing modes

Immediate addressing

" The operand is a constant contained in the instruction.
O The constant is explicitly indicated in assembly:

addi x1, x1,

O The machine instruction has a field where the constant is stored:

15/01/23 version

14 addi

" Since instructions take 32b and the immediate operands are contained in
them, constants always have a smaller width:
0 Unsigned 5-bit immediate: Used without extension.

O Signed 12/13-bit immediate: Extended to 32 bits before using them.
* If the constant has 13 bits, the instruction only stores the 12 most significant bits.

0 20-bits immediate: Used without extension, but shifted.

0 21-bitimmediate: Extended to 32 bits before using them.
e The instruction only stores the 20 most significant bits.

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

module 2:

Addressing modes

Register addressing

" The operand is stored in a processor register.
O The register name is indicated in assembly:

c
Q
&
o
>
I
N
~
—
o
~
o)
-

addi x1, @ 14
O The machine instruction has a field that indicates the register number:

x1 addi
v -
>
°
2
~§ x0
“ g """" > x1 -346
(7,1
% § x2
Qo O
€ a
x31

Registers

Addressing modes

Base addressing

" The operand is located in a memory position whose address is calculated:

0 Adding the content of a processor register (base register) with an offset
(constant) indicated in the instruction

O The offset and the register are indicated in assembly:

1w x3, (—32 (x1))

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

O The machine instruction has fields to indicate both elements:

-32 Xl IW
E oooooooooooooooooooooooooooooo
: ------------
t
S |
i 00000000
. S " %0 :
NS 2
L 3 x1 3c2fe530 + -+ 3c2fe510 >3350
3 9 %2 i
S 2
€ a
- fffffffc

Registers Memory

module 2:

15/01/23 version

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

Addressing modes

Base addressing

" A particular case of this addressing mode is when the operand is the
calculated address itself.
O Itis used in branch instructions.

O The branch address is calculated in the same way: adding the content of a
register with an offset contained in the instruction.

jalr x3, (x1, 1024)

1024 ..o x1 jalr
00000000
x0 :
x1 3c2fe530 <+ - 3c2fe930 instruction
x2 .
x31 fffffffc

Registers Memory

Addressing modes

PC-relative addressing

" The operand is a branch address that is calculated:

0 Adding the content of the PC (address of the instruction in execution) with
an offset (constant) indicated in the instruction.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

O Only the offset is explicitly indicated in assembly:

jal x3,(1024

O The machine instruction has a field that indicates the offset:

1024 jal

L

>

S

< 00000000

S .
.S
° 2 3c2£0000 3c2£0400 instruction
S QO .
T O
Qo O PC
€

FEFEFEFfC

Memory

module 2:

15/01/23 version

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

Addressing modes

About relative addressing

There is no absolute (direct) addressing in RISC-V because relative
addressing (PC or base) is more convenient in most cases.

O Absolute addressing: the instruction contains the explicit memory address
where the data/instruction is located.

O Absolute addressing requires 32 bits to indicate the address.
O In relative addressing only the difference between two instructions is
indicated, which usually requires fewer bits to be encoded.
Offsets may be short immediate because:
O For instructions, the usual case is to branch to nearby addresses.
* Which implies a short offset from the PC

O For data, these usually gather in an adjacent memory region.

* |If the start address of this region is stored in a base register, all data could be
accessed with small offsets relative to that base register

Besides, PC-relative addressing allows relocatable code:

O The calculation of branch addresses is always correct, regardless of the
memory address in which the program is located.

Instruction set

Concepts and types of instructions

" The instruction set is composed of all the instructions that can be
executed by a processor.

0 All programs executed by a computer are sequences of instructions that
belong to the same set.

15/01/23 version

" Instructions are classified in different types:
O Data transfer: they copy data between the registers and the memory.
Arithmetic: they perform arithmetic operations.

Shift: they perform bit shift operations.
Branch: they break the execution order by modifying the PC.
O Privileged: they allow access to functionality that controls the system.

" The RISC-V instruction set:
O Isvery reduced, in order to avoid duplicities.

(0)
O Logical: they perform bitwise logical operations.
(0)
(0)

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

module 2:

O Instructions and addressing modes are strongly coupled.

Instruction set
Arithmetic (i)

" They perform arithmetic operations with 2 source operands and 1
destination operand, all of them with 32 bits.
O The left operand is always in a register.

O The right operand is either in a register or is a short immediate.

* The immediate constant takes 12b in C2, in the [-2048, +2047] range, but its sign
is extended to 32b before using it.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

O The result is always stored in a register.

............ 1 destination operand ==:-..,.

st
ws®®
.
.®
.
.
*
o
4

.......... 250urceoperands ----....---------ia‘--.......

g ST et e <

S .

g sub , x2, x1 addi , @2, 76)—

% r12
" § x0 x0 /SEXt
° 2 x1 00200000 x1
3 Y x2 0£700ce4 x2 0£700000
g QE. . . 32 32 . . 32 A 32

x8 0£500ce4 x8 0£70004c <+
. : 32 . . 32
x31 x31

Registers Registers

Instruction set
Arithmetic (ii)

S
E Instruction Operation Description
N
5 add
S add rd, rsl, rs2 rd & rsl +rs2
sub rd, rsl, rs2 rd & rsl —-rs2 subtract

rd < if (rsl<grs2)

then (1) else (0) set if less than (signed)

rd < if(rsl<;rs2) set if less than unsigned
then(1)else(0)

addi rd, rsl, Emmy,, rd & rsl+ sExt(imm) addiimmcdiate

rd < if (rs1 <g sExt(imm))
then(1)else(0)

rd < if (rsl1 <, sExt(imm)) setif less than immediate unsigned
then(1)else(0)

set if less than immediate (signed)

sltiu rd, rsl, immg,,

module 2:

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

" There are different comparison instructions for signed and unsigned data.

" Thereis no subtraction with immediate operand, since this can be performed
by adding the opposite.

module 2:

15/01/23 version

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

Instruction set

Multiplication and division (i)

" The result of multiplying two 32-bit operands requires 64 bits.

O

There are two different types of multiplication instructions: one to calculate
the upper part of the result and another one to calculate the lower part.

There are different instructions to obtain the upper part of the result
depending on whether the source operands are signed or unsigned.

There is only one instruction to obtain the lower part of the result.
All the operands in these instructions are located in registers.

.............. 1 destination operand---

ne®
ast®
.t
.
*
.
o*
R

----------- 2 source operands terrerereeesel,

mulhé Gz, D)

*

mit 69, (22, x)

x0 x0

x1 0£700ce4 x1 0f700ce4

%2 00200000 32 x2 00200000 32
: 2 32 : t 32

%8 9c800000 x8 0001leel1

x31 32 x31 ‘_‘ 32

Registers Registers

Instruction set

Multiplication and division (ii)

" The integer division of two 32 bits operands produces two results: the
guotient and the remainder, both with 32 bits.

O For that reason, there are two different instructions: one to obtain the
quotient and another one to obtain the remainder.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
~—

O Each one has variations to operate with signed and unsigned data.
O All the operands in these instructions are located in registers.

.............. 1 destination operand---

-------------- 2 source operands rrerreeseils

*

o
%‘

. § x0 x0

Z) §, x1 00200000 x1 00200000

= x2 0£700ce4 32 %2 0£700ce4 13

S 8 : 3 : 3

€ : : - : : -
x8 00000007b x8 00100ce4
x31 13 x31 4_‘ 1 32

Registers Registers

Instruction set

Multiplication and division (iii)

S

g Instruction Operation Description
§ mul rd, rsl, rs2 rd & (rsl*rs2);., multiply

o

%

integer multiplication (32 least significant bits)

mulh rd, rsl, rs2 rd & (rslg*rs2)e5, multiply high
signed integer multiplication (32 most significant bits)

mulhsu rd, rsl, rs2 rd < (rslg*rs2)e3, multiply high signed unsigned
hybrid integer multiplication (32 most significant bits)

mulhu rd, rsl, rs2 rd & (rsl;*rs2)egs3, Mmultiply high unsigned
unsigned integer multiplication (32 most significant bits)

div rd, rsl, rs2 rd <& (rsl/grs2) divide
signed integer division

divu rd, rsl, rs2 rd & (rsl1/, rs2) divide unsigned
unsigned integer division

rem rd, rsl, rs2 rd & (rs1 % rs2) remainder
signed integer remainder

L
S
=
Q
£
S
I
S
o
Q
\
w
Q
S
o
Q

module 2:

remu rd, rsl, rs2 rd < (rs1 %, rs2) remainder unsigned
unsigned integer remainder

" These instructions are not in the RV32| set, but are part of the RVM extension.

Instruction set
Logical (i)

" They preform bitwise logical operations with 2 source operands and 1
destination operand, all of them with 32 bits.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

O The left operand is always in a register.

O The right operand is either in a register or is a short immediate.
* The immediate constant takes 12b in C2, but its sign is extended to 32b.

O The result is always stored in a register.

- 1 destination operand

= 2 source operands

N V’.
ori , (%2, 0xO0ff }—
412

Q
3
by
£
g x0 /SEXt
NS x1
& (2]
3 § *2 : 0£500a34 2. ¥32 00001111010100000000101000110100
o . .
£ a P . or 00000000000000000000000011111111
8 0£500aff (or)
: T 32 00001111010100000000101011111111
x31

Registers

Instruction set
Logical (ii)

" The bitwise logical operations, are used to manipulate individual bits
within data.
O One operand contains the data to manipulate.
O Another operand contains a mask that indicates the bits to change.
0 Different operations are used depending on the required manipulation

15/01/23 version

00001111010100000000101000110100 Grreesssreenns data
or 00000000000000000000000011111111 <Croverrrmmsnes mask
00001111010100000000101011111111 Crerrmerrmeees manipulated data

the orx instruction sets (=1) those data bits whose corresponding mask bits are 1

00001111010100000000101000110100 the and instruction resets (=0) those data bits whose
and 00000000000000000000000011111111 corresponding mask bits are 0
00000000000000000000000000110100

L
S
=
Q
£
S
I
S
o
Q
\
w
Q
S
o
Q

module 2:

00001111010100000000101000110100 the xor instruction toggles (1¢->0) those data bits
xor 00000000000000000000000011111111 whose corresponding mask bits are 1
00001111010100000000101011001011

Instruction set
Logical (iii)

S

o

0

&

S

0o

» Instruction Operation Description
and rd, rsl, rs2 rd & rsl & rs2 200

or

or rd, rsl, rs2 rd & rsl | rs2
xor rd, rsl, rs2 rd & rsl /A rs2 xor

andi rd, rsl, immy,, rd < rsl & sExt(imm) and immediate

) - . or immediate
ori rd, rsl, immy,, rd<& rsl | sExt(imm)

) -) xor immediate
xori rd, rsl, immy,, rd & rsl A sExt(imm)

L
S
=
Q
£
S
I
S
o
Q
\
w
Q
S
o
Q

module 2:

Instruction set
Shift (i)

" They shift bits of a source operand a number of positions indicated by
another one. Then it writes the result in another operand.
O The left operand (32b) is always in a register.

O The right operand (5b) is either in a register or is a short immediate.
* The 5 least significant bits of the register are taken.
 The immediate constant takes 5b is pure binary that are not extended.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

O The result is always stored in a register.

- 1 destination operand

------ 2 source operands

)]
3
8
:
.. § x0 left shifts 7 bits
Z) g x1 LT e e T T P T PP PP PP T PRI PP
3 8 x2 | 20700a32 J— |, 10010000011100000000101000110100
=S : 5 s1li 00111
*6 | 0e012680 J=7 & 00111000000001010001101000000000
x31

Registers

module 2:

15/01/23 version

L
S
=
Q
£
S
I
S
o
Q
\
w
Q
S
o
Q

Instruction set
Shift (ii)

" Logical shift instructions insert Os through one side of the data and
discard the same number of bits at the other side.

O This allows rescaling unsigned data:
e Left shifting n bits is the same as multiplying by 2"
e Right shifting n bits is the same as dividing by 2"

left shifts 7 bits right shifts 7 bits
GrrrrererrrarrnsirarararsiratarsrserarsrsEssrarssssssssrssssss aesessssssessssssssessssssestssssssessssssssssessssssssesssssses >
00000000000000000000101000110100 00000000000000000000101000110100
slli 00111 srli 00111
00000000000001010001101000000000 00000000000000000000000000010100
2612 << 7 = 2612x27 = 334336 2612 >> 7 = 2612+27 = 20

O After a bitwise logic operation, this allows extracting fields from data:

00001111101000000001010001101000

and 00000000111100000000000000000000
00000000101000000000000000000000 Crrrmeerrmeee Isolates data bits 20-23

srli 10100
00000000000000000000000000001010 Crorrreeeeee These are shifted to the right side

Instruction set
Shift (iii)

" Right arithmetic shift instructions propagate the sign bit on the left and
discard the rightmost bits.

O This allows rescaling signed data :

right shifts 7 bits >

11111111111111110001101000110100
srai 00111
11111111111111111111111000110100

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

-58828 >> 7 = -58828+27 = = -460

® There is no instruction for left arithmetic shift

.% O For valid results (the rescaled signed data can be represented with 32b),
% the logical shift is equivalent.
S
v R i e
§ § 11111111111111110001101000110100
slli 00111

11111111100011010001101000000000

-58828 << 7 = -58828x27 = -7529984

Instruction set
Shift (iv)

S
&
S
© Instruction Operation Description
s11 rd, rsl, rs2 rd € rs1 << rs2, g shift left logical
srl rd, rsl, rs2 rd & rsl>>rs2,, shift right logical
sra rd, rsl, rs2 rd € rs1 55> rs2, shift right arithmetical

s1li rd, rsl, immg, rd < rsl<<imm shift left logical immediate

srli rd, rsl, immg, rd & rs1>> imm shift right logical immediate

srai rd, rsl, immg rd & rs1 >>> imm shift right arithmetical immediate

L
S
=
Q
£
S
I
S
o
Q
\
w
Q
S
o
Q

module 2:

Instruction set

Data transfer: load

" They copy data from memory to a register.
O It uses base addressing to indicate the memory address of the data

* This address is the sum of a base address and an offset.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

* The base address is in a register.
* The offset isa C2 12b immediate, whose sign is extended to 32b.

O The data read from memory is loaded in a register.

destination register =r--.. ~Laesesees constant offset
Y v e base register
mm AN SN\
1), (20
S A 12
S 00000000
Q
. § %0 sExt32
ZJ g x1 :
= x2 00023cfe 00023ceb6 8b257a02
S : = 32 32 .
€ : : .
x8 8b257a02 +
L » 32
x31 fffffffc

Registers Memory

Instruction set

Data transfer: store

" They copy data from a register to memory.

O The dataisin aregister.
O It uses base addressing to indicate the memory address to store the data

* This address is the sum of a base address and an offset.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

* The base address is in a register.
* The offset isa C2 12b immediate, whose sign is extended to 32b.

destination register ===-... —~ Laeeereee constant offset
v v e base register
oW AN SN\
S A 12
S 00000000
Q
. § %0 SEX'{32
ZJ g x1 .
S Y x2 00023cfe 00023ceb6 8b257a02
S : . 32 32 .
= : E : 1
x8 8b257a02 # :
. . 32 .
x31 fffffffc

Registers Memory

Instruction set

Data transfer (i)

S

3] Instruction Operation Description

§ 1w rd, immg,,(rsl) rd & Mem[rsl1 + sExt(imm)] load word
1h rd, immg,,(rsl) rd < sExt(Mem[rs1 + sExt(imm)],) L?;:el(;alf

load half unsigned

lhu rd, Immg,,(rsl) rd & zExt(Mem[rs1 + sExt(imm)],5.q) s,

load byte

1b rd, immg,,(rsl) rd <& sExt(Mem[rs1 + sExt(imm)],.,) signed

1bu rd, immy, (rsl) rd < zExt(Mem[rsl+ sExt(imm) .) 98 L7702 USlEgee

unsigned
o | Aot
-
‘§ sw rs2, immy,,(rsl) Mem[rsl+sExt(imm)] & rs2 store word
g i - store half
85 sh rs2, immy,,(rsl) Mem[rsl+sExt(imm)] g, € rs2;s,
Q
L 3
S Q
g g sb rs2, immy,,(rsl) Mem[rsl+sExt(imm)], € rs2,., store byte

" There are different instructions to copy 8b, 16b or 32b data.
" Also for sign extension (signed) or zero extension (unsigned).

module 2:

15/01/23 version

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

Instruction set

Data transfer (ii)

" Datain memory is aligned, with Little-Endian organization

+0 +1 +2 +3

x0 00000000

x1 00001000 :

*2 222 00001000 |52 7a] 25 | 8b

x31 . fffffffc
Registers Memory

Instruction Operation Result
lw x2, 0(x1) X2 & Mem| x1 + sExt(0)] load 8b257a02 in x2
lhu x2, 0(x1) x2 ¢ zExt(Mem[x1 + sExt(0)],c,) load 00007202 inx2 (7a02 =, +31234)
lhu x2, 2(x1) x2 & zExt(Mem[x1 + sExt(2)],c,) load 00008b25 in x2 (8b25 =, +35621)
l1h x2, 0(x1) x2 & sExt(Mem[x1 + sExt(0)],,) load 00007a02 in x2 (7a02 =, +31234)
1h x2, 2(x1) x2 & sExt(Mem[x1 + sExt(2)],c,) load ££££8b25 in x2 (8b25 =, -29915)
lbu x2, 3(x1) x2 & zExt(Mem[x1 + sExt(3)],,,) load 0000008b in x2 (8b =, +139)
1b x2, 3(x1) x2 & sExt(Mem[x1 + sExt(3)],,) load ££££££8binx2 (8b =, -177)
1h x2, 3(x1) x2 & sExt(Mem[x1 + sExt(3)],.,,) alignment error

Instruction set

Conditional branch (i)

" They allow breaking the execution sequence branching to a nearby
address when a certain condition is met.
O It compares 2 two source operands located in registers.

O It uses PC-relative addressing to indicate the new PC address in the case
the condition is met.
e This address is the sum of the PC content and a short offset.
* The offset is a C2 13b constant, whose sign is extended to 32b

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

= 2 source operands

----------- constant offset

.

beq(x1, x8) @ %
X

x2 32

L

>

L)

Q

S

<

o
.. S x0
N g
v 2 x1 0x0£700ce4
3 3
Qo O
€

x8 0x00200000

32 PC

x31

Registers

Instruction set

Conditional branch (ii)

" Conditional branch instructions are used to implement control structures
e.g. if, while, for... in assembly.

15/01/23 version

C/C++ 1 ASM R when beq is executed, the PC
) © contains its address; adding 8 to
if(a '= b) dir beq x5, x6, 8 < the PC, the program would
a=a+1; dirt4 |addi x5, x5, 1 branch to sub (only if the
- comparison is true
c =c¢ - b; dir+8 |sub x7, x7, x6 P 4
Ca>x5 b>x6 ¢c>x7 Assignment of the C variables to the RSIC-V registers

--

" The immediate offset (that is added to the PC to perform the branch):
O ltissigned, and therefore it allows forward or backward branches.

O Since it has 13 bits and each instruction takes 4B, it allows branching up to
1024 instructions backwards and 1023 forwards, from the branch instruction.

* A C213bconstantisin the [-4096, +4095] range.
O Its 2 least significant bits are 0, because all the instructions are aligned.

* In fact, the least significant bit is not stored in the instruction.

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

module 2:

Instruction set

Conditional Branch (iii)

5

[Z

2 Instruction Operation Description
AN

S if (rs1=rs2) branch if equal

b rsl, rs2, 1mm .
= 135 then (PC ¢ PC + sExt(imm,,., << 1))
if (rs1#rs2)

b rsl, rs2, imm .
ne 130 then (PC ¢ PC + sExt(imm,,., << 1))

branch if not equal
if (rsl<grs2) branch if less than

blt rsl, rs2, Imm : .
135 then (PC & PC + sExt(imm,,., << 1)) signed

if (rsl124rs2) branch if greater than or equal

b rsl, rs2, imm . .
ge 135 then (PC & PC + sExt(imm,,., << 1)) signed

if (rsl<,rs2) branch if less than unsigned

bltu rsl, rs2, Imm . .
“ 135 then (PC & PC + sExt(imm,,., << 1)) unsigned

if (rs12>,rs2) branch if greater than or equal unsigned

b rsl, rs2, iImm : ;
geu 130 then (PC < PC + sExt(imm,,, << 1)) unsigned

" There are different instructions to compare signed and unsigned data.

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

module 2:

" There are no branch instructions with an immediate operand.

" There are no “greater than” or “less than or equal”, because these can be
implemented using the other instructions and changing the order of the operands.

Instruction set

Branch to function: jal

" They allow breaking the execution sequence by branching to a faraway
address, but saving the return address.
O It uses PC-relative addressing to indicate the new PC address.

* This address is the sum of the PC content and a long offset.
* The offset is a C2 21b constant, whose sign is extended to 32b.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

O The next instruction address (return) is saved in a register.

- 1 destination operand

--------------- offset
g jal (x8) (232 a7
5 N
.
e x0 -
3 8 x2 PC
P . .
e : : 132
x8 XXXXKXXK |+ @<
. H 32
x31

Registers

Instruction set

Branch to function: jalr

" They allow breaking the execution sequence by branching to a faraway
address, but saving the return address.

O It uses base addressing to indicate the new PC address.
e This address is the sum of the PC content and a short offset.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

* The offset is a C2 12b constant, whose sign is extended to 32b.
O The next instruction address (return) is saved in a register.

------------- 1 destination operand

-------------------- base register
S e offset
Y | . A A — 2
g jalr r r @ =
2
g . SExt
.. x
2 § 0 32
- U
3¢ X2 0£700000 A—(+) ¥
3 E L . 32 32
s § ; : PC
X8 XXXKXXKX e+ @‘ . I
. T 3 32
x31

Registers

Instruction set

Branch to function (i)

® Branch to function instructions are used to implement function calls in
assembly.
O Each of the functions in a program is located in a different memory address.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

O To call a function means branching to the address of its first instruction.

O Returning from a function means branching to the address of the
instruction following the one that made the function call.

C language RISC-V assembly
o] . when jal is executed, the
g . PC contains its address;
-‘§ a=>b-c¢j dir-4 | sub x5, x6, x7 PC+4 is saved in x1 anZ!
g foo(); dir jal x1, 1000 <o 1000 is added to the PC in
&5 c=c¢c+ 1; dir+4 |addi x7, x7, 1 order to branch to the
% a function.
9] o« o o
38 |74 |74
S o | T

a—>x5 b->x6 c—>x7 iAssignment of the C variables to the RSIC-V registers

--

Instruction set

Branch to function (ii)

S
?
2
&
S
= . . .- ..
Instruction Operation Description
jump and link register
jalr rd, rsl, Emmy,, PC & rsl+sExt(imm), rd & PC+4 branch to function with base
addressing

jump and link
jal rd, 1mm,q, PC & PC + sExt(imm,,, << 1), rd ¢ PC+4 branch to function with PC-
relative addressing

" In the RISC-V instruction set there are no return or unconditional branch
instructions, but these can be implemented using jal and jalr:
O Assuming that the return address is stored in register xn, the return can be performed
as: jalr x0, xn, O
O An unconditional branch (PC-relative) to the address of a certain instruction can be
performed as: jal %0, imm,,,

L
S
=
Q
£
S
I
S
o
Q
\
w
Q
S
o
Q

module 2:

Instruction set

lui instruction (i)

" It loads a constant in the upper part of a register.

O The source operand is a 20b immediate constant.
* |tis zero-extended to 32b, adding 12 Os on the right.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

O Theresultis a stored in a register.

------- 1 destination operand

nm®
““““
.
.
.
.
.
“
*

------------ 1 source operand

lui , @x4c\;37b) ——

0
x0
o v ox1 12
= 9 x2
0 R%
£ o0
S L xs 4c37b000
oA H 32
v 9
\5)
% § x31
o O
£ a
Instruction Operation Description

lui rd, Immy,, rd<&imm<<12 load upper immediate

Instruction set

lui instruction (ii)

% " The 1lui instruction is used to operate with 32b long constants.
g O Immediate operands in arithmetic-logic instructions are short (12b).
C ASMF
a= b + Oxabcdel23; lu:L x7, Oxabcde) SEELLD x7 = abcde000
addi x7, x7, 0x123 | < x7 = abcde000
.. add x5, x6, x7 * 22232122

: a->x5 b->x6 :

Assignment of the C variables to registers

O Since the addi instruction extends the sign of the immediate value, if bit 11
of the long constant is 1, then the 1ui constant has to be increased by 1

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

. C ASM |
o~ e o o e o o
E a = b + Oxabcde987; lui x7, Oxabedf |<+ x7 = abcd£000
S addi x7, x7, 0x987 |<--- x7 = abed£000
add x5 x6 x7 + ££f£££987
.. , X6, LELLE987

a>x5 b->x6 -

--

Assignment of the C variables to registers

Instruction set

lui instruction (iii)

S
5 " Although it is not very common, the 1ui instruction can also be used to
= work with 32b absolute memory addresses.
= O To transfer data located in any absolute memory address.
ASM R ASM R
lui x6, 0x76543 lui x6, 0x76543
1w x5, 0x210(x6) sw x5, 0x210(x6)
Y. Y.
" 7 e . 7
loads the data located in stores the data located in x5 into
address 0x76543210 into x5 address 0x76543210
§ 0 To branch to functions located in any absolute memory address.
Q
S ASM
-S o o o
“ g lui x6, 0x76543 branches to the instructi
& . 3 R rancnes to tne instruction
She Jalr x1, x6, 0x210< located in address 0x76543210
38
g & 74

O Since the 1w, sw and jalr instructions also extend the sign of the immediate
offset, when bit 11 of the absolute address is 1, the 1ui constant has to be
increased by 1.

Instruction set

auipec instruction (i)

" |t adds a constant to the upper part of the PC.

O The source operand is a 20b immediate constant.
* |tis zero-extended to 32b, adding 12 Os on the right.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

O Theresultis a stored in a register.

===« 1 destination operand

we®
Ry
.
.
.
.
.

----------- 1 source operand
v
auipc , (0x4c37b)
20
0
x0
@ & x1 12
e o x2 00000040 PC
< 2 . 32
Q
5 x x8 4c37b040 ()~
§ § x31
g &
Instruction Operands Descriptions

auipc rd, Imm,y,, rd <& PC+(imm<<12) add upper immediate to PC

module 2:

15/01/23 version

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

Instruction set

auipec instruction (ii)

The jal instruction, even using a long offset, only allows branching to
addresses in the £1MiB range, which sometimes is not enough.

O Since the offset has 21b and each instruction takes 4B, it only allows
branching up to 262,144 instructions backwards and 262,143 forwards.

The auipc instruction, together with jalr, are used to perform PC-
relative branches to functions located in any memory address.

O This covers the full +4GiB address space.
ASM
addr é.l.u:.pc x6, 0x76543

2lr x1 % %210 <deeeienns branches to the instruction located
Ja , X6, 0 0 7 0x76543210 bytes ahead of addr.

O Since the jalr instruction extends the sign of the immediate value, when
bit 11 of the 32b offset is 1, the auipc constant has to be increased by 1.

Instruction set

auipec instruction (iii)

" The load and store instructions use base addressing with a short offset

O This covers a £2KiB range respect the base address .

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

" Combining these instructions with auipc, any memory address (PC-
relative) can be accessed.

ASM ASM R
addr | auipc x6, 0x76543 addr | auipc x6, 0x76543

S 1w x5, 0x210 (x6) Sw x5, 0x210 (x6)

S Y. ¥.

% . 7 ... e |74

§ loads the data located in address “*.., stores the data located in x5 into
NS (addr + 0x76543210) into x5 address (addr + 0x76543210)

172
g 8 O Asin previous cases, when bit 11 of the PC-relative 32b offset is 1, the

auipc constant has to be increased by 1.

Instruction set

Most popular instructions

" There are instructions more frequently used than others

O This can be measured counting how many times each instruction is
executed in a set of standard programs (SPEC CPU2006)

=
i)
&
o
>
(2@}
AN
~
~
o
=
(o]
~

Instruction Description Frequency Accumulated
1w load 19.48% 19.48%
addi add immediate 17.22% 36.70%
sSwW store 8.05% 44.75%
g add add 7.57% 52.32%
Y]
% bne branch if not equal 4.14% 56.46%
o
& g slli shift left logical immediate 3.65% 60.11%
L 32
‘§ § beq branch if equal 3.27% 63.38%
£ a
mul multiply 2.02% 65.40%

source (adapted): D.A. Patterson and J.L. Hennessy. Computer Organization and Design. RISC-V Edition (2021)

RISC-V: ISA and extensions

" RISC-V is an open and flexible architecture.
O It defines instruction sets architectures (ISA) and extensions.

O All RISC-V processor must support one of the ISA and optionally some of the
extensions.

" |SA:
O RV32l: 32-bit instructions and data/addresses.
O RV32E: RV32l version with only 16 registers.
O RV64l: 32-bit instructions and 64-bit data/addresses.
O RV128l: 32-bit instructions and 128-bit data/addresses.

15/01/23 version

" Extensions:
O RVM: includes integer multiplication, division and remainder.

O RVF:includes 32 floating point data registers, as well as floating point
arithmetic, relational and conversion operations.

O RVD: 64-bit floating point data version (double precision).
O RVQ: 128-bit floating point data version (quadruple precision).
O RVC: extension with 16-bit compressed instructions.

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

module 2:

module 2:

15/01/23 version

L
S
=
Q
£
S
I
S
o
Q
\
w
Q
S
o
Q

RISC-V: ISA and extensions

Example: RV64I ISA (i)

" RV64| ISA.
O 64-bit integer data and 32-bit instructions.
O It has 32 registers, with 64 bits.
O Includes 64b memory transfer instructions.
O Redefines the 32b transfer instructions.
O Includes a new instruction for 32b unsigned data load.

Instruction

Operation

Description

1d rd, 1mm(rsl)

sd rs2, imm(rsl)

rd & Mem[rs1 + sExt(imm,,,)]

Mem[rs1 + sExt(imm,,,)] & rs2

load double word

store double word

Instruction

Operation

Description

1w rd, 1mm(rsl)
lwu rd, 1mm(rsl)

sw rs2, imm(rsl)

rd & sExt(Mem[rs1 + sExt(imm,,,) 151.0)
rd & zExt(Mem[rs1 + sExt(imm,,) 15,.0)

Mem[rs1 + sExt(immy,,) | € rs3,

load signed word
load unsigned word

store word

RISC-V: ISA and extensions

Example: RvV64I ISA (ii)

" RV64l ISA.

O Arithmetic-logic instructions work with 64b data (immediate operands still
have 12b but extended to 64b)

0 Redefines the shift instructions to work with 64b data (they require 6b to
indicate the number of bits to shift)

15/01/23 version

Instruction Operation Description

sll rd, rsl, rs2 rd<&rsl<<rs2g, shift left logical
srl rd, rsl, rs2 rd<&rsl>>rs2., shift right logical
sra rd, rsl, rs2 rd & rs1>>>rs2., shift right arithmetic

slli rd, rsl, imm rd & rsl<<immg shift left logical immediate

srli rd, rsl, imm rd & rsl>>immg, shift right logical immediate

L
S
=
Q
£
S
I
S
o
Q
\
w
Q
S
o
Q

module 2:

srai rd, rsl, imm rd & rsl>>>immg, shift right arithmetic immediate

RISC-V: ISA and extensions

Example: RV64I ISA (iii)

S
" RV64I ISA.
™
= O Includes arithmetic-logic and shift instructions to work with 32b data (w
< suffix).
Instruction Operation Description
addw rd, rsl, rs2 rd <& sExt(rslyo+rs2;5,) add word
subw rd, rsl, rs2 rd & sExt(rsly;o-rs2;.,) subtract word
addiw rd, rsl, imm rd & sExt(rsls,q+ SExt(immy,,)z0) add immediate word
Instruction Operation Description
L
§ sllw rd, rsl, rs2 rd & sExt(rsly;,<<rs2,,) shift left logical word
"S srlw rd, rsl, rs2 rd & sExt(rsly o >>rs2,,) shift right logical word
(S
9 2 sraw rd, rsl, rs2 rd & sExt(rsl;o>>>rs2,,) shift right arithmetic word
S Q
T O |
s slliw rd, rsl, imm rd & sExt(rsl; . <<immg,) shift left logical immediate word
srliw rd, rsl, Iimm rd & sExt(rsls; o >>immg,) shift right logical immediate word

sraiw rd, rsl, Iimm rd & sExt(rsl,;,>>>immg,) shift right arithmetic immediate word

module 2:

15/01/23 version

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

RISC vs. CISC architectures

" RISC-Vis a clear example of a RISC architecture.

O
O
O

Other RISC architectures are: PowerPC, DEC Alpha, MIPS, ARM, SPARC...
It is the predominant architecture in mobile devices.
75% of the processors have an ARM architecture.

" But there are also other architectures with a different paradigm, called
CISC architectures (Complex Instruction Set Computer).

O O O O

They have a large set of complex instructions.

Instructions can work both with data stored in memory as well as data in
registers

They have a reduced number of registers, some of them with a specific
purpose.

They have a large number of addressing modes.

Instructions have a variable size and many different formats.

Example of CISC architectures are: Motorola 68K, Intel x86, AMD x86-64...
It is the predominant architecture in personal computers.

RISC vs. CISC architectures

x86 architecture (i)

" The x86 architecture is the main example of a CISC architecture

O Introduced by Intel in 1978 in the 8086 y 8088 microprocessors, it has evolved
through several generations.

O Used by personal computers since the launch of the IBM-PC in 1981.

c
i)
&
o
>
™
N
~
~—
o
Y
0o
—

Feature RISC-V (RV32l) x86
Number of registers 32 general purpose 8, with some use restrictions
Number of operands 3 (2 source, 1 destination) 2 (1 source, 1 source/destination)
§ Operand location Registers or immediate Registers, immediate or memory
S
% Operand size 32 bits 8, 16 or 32 bits
'E' % Condition flags No Yes
§ § Number of instructions Reduced Large
Type of instructions Simple Simple and complex

Instruction encoding Fixed: 4 bytes/instruction Variable: from 1 to 15 bytes/instruction

module 2:

15/01/23 version

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

RISC vs. CISC architectures

x86 architecture (ii)

Instruction

Operation

Adds with...

add AH, BL

add AX, -1

add EAX, EBX

add EAX, 42

add EAX, [20]

add EAX, [ESP]

add EAX, [EDX+40]

add EAX, [60+EDI*4]

add EAX, [EDX+80+EDI*4]

add [20], EAX

add [20], 42

AH < AH +BL

AH & AH + Oxffff

EAX & EAX + EBX

EAX & EAX + 0x0000002a
EAX & EAX + Mem|[20]
EAX & EAX + Mem[ESP]

EAX & EAX + Mem[EDX+40]

EAX & EAX + Mem[60+EDI*4]

EAX & EAX + Mem[EDX+80+EDI*4]

Mem[20] & Mem[20] + EAX

Mem[20] €< Mem[20] + 42

8b registers

16b immediate

32b register

32b immediate
absolute addressing
base addressing

base addressing with offset
scaled index register with offset

base register, offset and scaled index
register

32b register stored in memory

immediate stored in memory

About Creative Commons

" CClicense (Creative Commons)

O This license enables reusers to distribute, remix, adapt, and build
upon the material in any medium or format for noncommercial
purposes only, and only so long as attribution is given to the creator.
If you remix, adapt, or build upon the material, you must license the
modified material under identical terms:

15/01/23 version

Attribution:
Credit must be given to the creator.

Non commercial:
Only noncommercial uses of the work are permitted.

Share alike:
Adaptations must be shared under the same terms.

L
S
-
Q
S
S
I
S
o
Q
0
)
Q
S
o
Q

module 2:

More information: https://creativecommons.org/licenses/by-nc-sa/4.0/

