Module 7:
Pipelined processor design

Introduction to computers Il

José Manuel Mendias Cuadros

Dpto. Arquitectura de Computadores y Automatica ‘@@@@\
Universidad Complutense de Madrid

QOutline

v’ Introduction.

v’ Data path design.

v" Controller design.

v’ Structural hazards.

v' Data hazards.

v’ Control hazards.

v Comparison: single-cycle vs. multicycle vs. pipelined.
v Advanced microarchitectures.

v Technology.

27/10/23 version

[~
3
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

These slides are based on:
* S.L. Harris and D. Harris. Digital Design and Computer Architecture. RISC-V Edition.
* D.A. Patterson and J.L. Hennessy. Computer Organization and Design. RISC-V Edition.

Introduction

" No modern processor is single-cycle.
o This microarchitecture was only used in the first computers.

27/10/23 version

" No current processor is multicycle.

o This microarchitecture was used until the late 80s:
* Mainframes: IBM/360, DEC VAX
* Microprocessors: 8088/86 (IBM PC), 68000 (Apple Macintosh), Z80 (Spectrum)

o Nowadays, it is only used in low-performance microcontrollers:
8051, 68HC11, PIC-16

" Since the 90s, all processors are pipelined.

o Current processors use even more advanced microarchitectures but based on
the pipelining concept.

[~
3
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Introduction
Pipelining (i)

" At home, it is usual to have a sequential laundry:

o 4 stages with similar duration: wash, dry, iron and store.

time
Ci T > 1 3T a1 5T 6 1 7 1 81 o9 T 10 [11 12] 13 | 14 15 | 16] 17] 18 | 19 | 20]
: o6 @IH
: e [© &@E
glal i
3 e [0 & |E
el [@ BIE
" Each appliance is inactive during 75% of the time.
" 1 load takes 4 units of time.
" 5 |oads take 4x5 = 20 units of time.
" nloads take 4:n units of time.

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Introduction
Pipelining (ii)

" Inanindustrial laundry, the process is more efficient:
o A new load is started even if the previous one has not finished

time

CiT 2T 3T 41 5161 71 81 9 1011121

: @l le@T .
By Speedup =

@ PECtP =y -1
f & I 4-n _y
3 now 4+ (n—1)

" Now, appliances are used 100% of the time.
" 1 load still takes 4 units of time.

" 5 |oads now take 4 + (5-1) = 8 units of time.
" nloads take 4 + (n-1) units of time.

Introduction
Pipelining (iii)

" A pipelined processor behaves as in the industrial laundry example,
overlapping the execution of several instructions.

27/10/23 version

#eycle | 1| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
instruction1 | |F | ID | EX |MEM| WB
instruction 2 IF | ID | EX [MEM| WB
instruction 3 IF | ID | EX [MEM| WB
instruction 4 IF | ID | EX [MEM| WB

o Each cycle, a new instruction is fetched before the previous one has finished.

o Each instruction goes through 5 stages, taking 5 cycles to execute:
* The latency of this processor is 5 cycles.

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

" The execution time of a program will be much lower because:
o Several instructions are executed simultaneously.
o The cycle time can be shorter (as in the multicycle processor).

o lIdeally, CPI =1 (as in the single-cycle processor).

Data path design

Reduced RISC-V data path (i)

" The data path of the pipelined processor is:
o single-cycle processor data path + pipeline registers

c
.0
w
—_
(]
>
™
AN
~~
(@)
A
~
N~
(qV}

m

memory

Data

c
(2]
S P4 *3? RA1 WE RD1
D Q__._A SED [
@ S0 RA2 9 =]
"~ 2§ 29 2
< = WA P& RD2 <
w © |
3
o A
.
N
5}
S S
T Q
O.E- /
€ < Sign l

extension
+

Data path design

Reduced RISC-V data path (ii)

" The data path of the pipelined processor is:
o single-cycle processor data path + pipeline registers

c
.0
w
—_
(]
>
™
AN
~~
(@)
A
~
N~
(qV}

c
S z
D Q__._A E €D [
g S0 RA2 &)
° g E 2 9 =l -
s = WA D& RD2 < g8
\ x Qo
g WD g
O
9 A
.
N
v
S S
T Q
= .E- /
€ < Sign l

extension
+

Data path design

Reduced RISC-V data path (iii)
IF : ID : EX . MEM . WB

Instruction fetch Instruction decode and Execution or = Data memory : Write back
register file read . address calculation . access .

27/10/23 version

/

Sign

extension .
: +

4
<
2> WE

< ‘6 S o RA1 RD1

ey art—A 3 g s

: 1 wa §

~° D

< s WA ¥ RD2

2 &

i wD

S

e A

S

S

)

£

)

2

g

module 7:

Data path design

Reduced RISC-V data path (iv)

c
IF 5 ID ; EX . MEM . WB
g Instruction fetch Instruction decode and Execution or = Data memory : Write back
g : register file read : address calculation : access
N . Pipeline registers are added to separate stages :
P Ll ""--._-ulu;:::: ___________ .
RPRPPCT T L L s, B T PR LTI
4 v 4 ----- d v -.) v > v
32 32/ 32f 32/
7 7 7
32f
7
v S 2 WE z |5 2
k) oA S8 D.S’_Z/ RA1 RD1 32/ A = WE |sfs
n S0 9 > | [
Q 7 £ RA2 G o 7k = 32l A SRD - 0
N = Q WA D& RD2 +|.u < 80
) IE o = s &
79 — x o Qo
§ WD 32/ E
S A 7 WD
.. Q A
NS 5[s/ 5/
L e 7/ 7/ 7/
S
t QJ — —
SR~ /
€ a Sign 32/
extension [v
+
32/ 32f
A A

1w instruction: |IF stage

Data path design

c
o
12 , #cyclel _1 | 2 | 3 | a4 | s
0 The 1w load instruction takes 5 cycles / ,
Q using resources in all the stages I S I I
S lw x5, 40 (x1) IM RF = DM RF
= I | =
AN
IF 4 M M M M
<t
Ed 3
3
- S WE z = g | 2
S N |S S2p RA1 RD1 = WE S)
A a S & 3 < w
bl [38 |5 RA2 2 o I, groH=—
s = =g WA BF Rp2}—i < g8
Q ™ x a Qo
8 g WD s
L2 A
3
3 S
g .Qé- / - -
SN Sign
extension v

Data path design

1w instruction: ID stage

C
(@]
2 . #eycle] 1 | 2 | 3 |
o The 1w load instruction takes 5 cycles y
Q using resources in all the stages I S I
S lw x5, 40 (x1) IM RF =
= I >
~
(q\]
4 M I D M M
S > WE z |= g
b4 = x1 w <
S oA SE o RAT . RD1 = WE =
0 S O — RA2 & oD X w
3 2 & ® ? L - Wid—dA >RD
S £ 5l wa 2% RD2—i < ® o
a L) < x =) Qo
g g wo :
§ 3 A WD
L2 A
N S 5
s S
S -
() -2' /
SN Sign 40
extension ° >
+

Data path design

1w instruction: EX stage

c
o
B ' , #eyclel 1| 2 | 3 1
o The 1w load instruction takes 5 cycles
Q using resources in all the stages I S I
= lw x5, 40 (x1) IM RF =
: I > |
=
AN
4 ™ - EX -
- v -§§ ra1 WE x1 z |2 s >
() o 4 RD1 = WE =
g - ‘§§D rRA2 & 3 I I PR z :
o 29
S £ e WA BF Rp2}—i <LJx1+40 S 9
S > 2 a 8 §
0 WD g
§ A WD
L2 A
N 8 5
3 S
t QJ — —
Qo -S' /
SN Sign 40
extension >
+

Data path design

1w instruction: MEM stage

c
o
12 , , #cycle| 1 | 2 | 3 | a4 | s
0 The 1w load instruction takes 5 cycles / ,
Q using resources in all the stages I S I I
S lw x5, 40 (x1) IM RF = DM RF
= I | ==
AN
_ o 9 MEM
s
v S > WE z =)o g 2
S o S8 RA1 RD1 =[|3| Wwe E
G o £§P RA2 & 2 A= = .
"~ 2§ 29 9 0 wd A 2RD[—I=
N =< 2 WA P% RD2}—i < S
2 = X a Qs |3
0 WD g |=
S A wp 5
S A =
N 8 5
3 S
t QJ — —
Qo -S' /
SN Sign
extension v

27/10/23 version

module 7:

Pipelined processor design

Data path design

1w instruction: WB stage

[

Instruction

memory

IF/ID

#cycle | _1 2 | 3 | 4
The 1w load instruction takes 5 cycles y
using resources in all the stages S I I
lw x5, 40 (x1) IM RF = I DM
M M
WE z |= g
N o Bl = LS
) > T
= WA $F RD2p—i < g8
< (14 a Qo
a WD g
3 A WD
o A
117 =

/

Sign

extension

sw instruction: IF stage

Data path design

c
o
12 , , #cycle | _1 2 | 3 | a4 | 5
o The sw instruction takes 5 cycles
Q without using the RF in the WB stage) I I
= sw x9, 80(x2) | ImM RF = DM
S | =
AN
IF 4 M M M M
<t
I s
S
S N ¢ $8 ra1 WE 2 |3 g | 2
S C) S8 b . RD1 = WE s 1
Al A 58 s RA2 $ o) = 3
S o X 8 o . 3 A _ 2RD
S S sle WA D8 Rpz}—{d % £
Q © fu x a Q9
g) WD S
S . A WD
. s @ A
53
3 S
S Sign
extension v

27/10/23 version

module 7:

Pipelined processor design

Data path design

sw instruction: |ID stage

[

Instruction

memory

#cycle| 1 2 | 3 |
The sw instruction takes 5 cycles y
without using the RF in the WB stage S I I
sw x9, 80(x2) | ImM RF = I DM I
= ID = - -
WE X2 z |= g | 2
D RAT " RD1 = WE =)
~ RA2 & oD > w
3 e o] JF—"HHa |, zeo
EH WA 2% RD2—i < g8
wj x =] Qo
=) WD £
3 A WD
* A

P

Sign

80

extension

27/10/23 version

module 7:

Pipelined processor design

Data path design

sw instruction: EX stage

[

Instruction

memory

IF/ID

#eycle| 1| 2 | 3 1 a4 | s
The sw instruction takes 5 cycles y
without using the RF in the WB stage I S I I
sw x9, 80(x2) | ImM I RF = I DM I
o EX = .
WE X2 z |2 g | 2
RAT . RDI h s WE =)
] < w
RAZ 2] 2 o], ko=
WA 8% RD2f—l—1— <LJx2+80 g8
x a Qo
WD X9 g
A WD
A

/

extension

Sign

80

Data path design

sw instruction: MEM stage

c
o
Iz , , #cycle | _1 2 | 3 | 4 1 5
0 The sw instruction takes 5 cycles /
Q without using the RF in the WB stage) I I
= sw x9, 80(x2) | ImM RF = DM
S | =
AN
- - q MEM g
S > WE z |= 2
b4 = wl 1o 2
& a S O RA2 & - IR o
"~ 2§ 29 y 0 Wd A >rpp=
N = (= WA P& RD2p—u < E 9
) L @ a © £
n = = Q o
Q WD x9 g
Q WD
o A
S, A
N3
5]
S S
t QJ — —
S Q /
€ < Sign
extension v

Data path design

sw instruction: WB stage

c
.0
7 , ' #cycle |1 2 | 3 | 4
0 The sw instruction takes 5 cycles
Q without using the RF in the WB stage) I I
= sw x9, 80(x2) | ImM RF = DM
S I
AN
- - - m WB
S > WE z |= 2
v S w s 2
I E R ra o =5 L
n Q S0 RA2 &) x w
N 2§ 29 » 2 WA _ 2RD=
s £ l2 WA DT Rpz}—i < 30
Q L x a Q9
9 WD g
§ A WD
L2 A
N3
5]
S S
t QJ — —
Qo .E_ /
€ < Sign
extension v

Data path design

add-like instruction: IF stage

c
o
B , ' #eyclel 11 2 | 3 |
0 The add instruction takes 5 cycles
Q without using the memory in the MEM stage I I
% g Y g add x7, x3, x4 | IM RF 2
S I I
(qV}
IF 4 M M M
<
t S
3
i S & WE z |= g
5 F A S€o RAT ™ Ro = =
- = gle WA DT Rp2p—l < g8
g = X a Qo
1] b WD E
S 3 A WD
o T
. s © A
3
‘8 _Qé. / =
SN Sign |
extension >
+

27/10/23 version

module 7:

Pipelined processor design

Data path design

add-like instruction: ID stage

The add instruction takes 5 cycles

cycle |

1

4' RF

[

|
without using the memory in the MEM stage S I
add x7, x3, x4 | IM RF = I I
e ID i ¥ .
S > WE z |= g
= x3 Ll ;
S2p RAT " RD1 = WE §‘|
SO RA2 &) s E
g E % xa | _l WdaA >RD
= B WA = RD2}—i < g8
T x o Qo
WD £
A WD
; A

/

Sign

extension

27/10/23 version

module 7:

Pipelined processor design

[

Instruction

memory

The add instruction takes 5 cycles

Data path design

add-like instruction: EX stage

cycle |

1

4' RF

|
without using the memory in the MEM stage S I
add x7, x3, x4 | IM RF = I I
- EX o -
WE x3 O g |
[} X L
RA2 };; o a 1 i A ERD =
WA P% RD2—u X3+Xx % £
x a Qo
WD £
A WD
A
7

IF/ID

/

extension

Sign

Data path design

add-like instruction: MEM stage

C

el

7 , ' #eyclel 1| 2 | 3 |
0 The add instruction takes 5 cycles

Q without using the memory in the MEM stage I S I
S add x7, x3, x4 | IM RF =

5 | |
AN

NEM/WB

x3+x4
<

s v S S‘ rar VE 2 I3
3 3 E RAZ G o " JF—“H—a _ 2rD
N £ 2 WA ¥ RD2f—li < £ 8
S > 2 = 8 §
0 WD g
§ A WD

- Q A

N 8 7

Q

S S

T Q -

S -s‘ /

€

Sign

extension
+

27/10/23 version

module 7:

Pipelined processor design

Data path design

add-like instruction: WB stage

The add instruction takes 5 cycles

cycle |

1

[

memory
=]

Instruction

IF/ID

|
without using the memory in the MEM stage S I
add x7, x3, x4 | IM RF = I I
M M
WE z |3 E: ‘
RAT _ RDI A = WE =
() X L
RA2 .‘i" 2 " - 1] A E"RD =
WA 95 RD2p—i < g8
x a Qo
WD £
A WD
A

/

Sign

extension

Data path design

addi-like instruction: IF stage

C
(@]
12 . . #eycle 1| 2 | 3]
0 The addi instruction takes 5 cycles
i without using the memory in the MEM stage I I
S g Y 9 L4di x5, %6, 7 | M RF 2
S I I
(q\]
IF 4 M M M
<
t 5
S
g E.. WE Z = a
v = LLl ;
5| Py o 8o RAT RO || [we s‘ L
@ N |1* e |~ RA2 & -) X iu
N = xlg WA D% RD2p—u < ‘§§
Q s L. [m)
" v 1= x a Q o
Q s WD g
§ g A WD
8 © A
3
= =
SN Sign
extension >
+

27/10/23 version

module 7:

Pipelined processor design

Data path design

addi-like instruction: ID stage

[

. . #cycle | _1 2| 3 |
The addi instruction takes 5 cycles .
without using the memory in the MEM stage) S I I
addi x5, x6, 7 |IM RF = I I RF
e ID o ¥ y
$3 ra1 NE X A |2 s
58, . RO1 = L
S ~ RA2 & =2 n =
g E < 59 L - A _ 2RD
£ Igl X WA % RD2 _Iu\J < .g g
Ll X o Qo
> WD g
2 A WD
. A

P

Sign

extension

27/10/23 version

module 7:

Pipelined processor design

[

Instruction

memory

The addi instruction takes 5 cycles

Data path design

addi-like instruction: EX stage

cycle |

1

4' RF

|
without using the memory in the MEM stage) I S I
addi x5, x6, 7 |IM I RF = I I
9 EX o -
WE X6 z |= g |
3 < w
RAZ § | = o], ko=
WA P& RD2}—{i <L) x6+7 g8
x a Qo
WD £
A WD
A

IF/ID

/

extension

Sign

Data path design

addi-like instruction: MEM stage

C

9

2 . . #cycle| 1 | 2 | 3 |
0 The addi instruction takes 5 cycles

Q without using the memory in the MEM stage) I S I
S addi x5, x6, 7 |IM RF =

= I I
AN

NEM/WB

X6+7
c

< v £5 rat VE 2 I3
3 3 E RAZ G o " JF—“H—a _ 2rD
N £ 2 WA ¥ RD2f—li < £ 8
S > 2 = 8 §
0 WD g
§ A WD

- Q A

N 5

Q

S S

T Q -

SR~ /

€ a

Sign

extension
+

27/10/23 version

module 7:

Pipelined processor design

Data path design

addi-like instruction: WB stage

The addi instruction takes 5 cycles

#cycle | _1

[

memory
=]

Instruction

IF/ID

|
without using the memory in the MEM stage) S I I
addi x5, x6, 7 |IM RF = I
M M
WE z |= g
N i Bl = LS
() X L
WA 95 RD2p—i < g8
x a Qo
WD g
A WD
A

/

Sign

extension

Data path design

begq instruction: |IF stage

c

Re)

£ The beq instruction takes 5 cycles #eycle| _1 |1 2 | 3 |
- without using the memory in the MEM stage I I
% or the RF in the WB stage beq x1, x0, 16 |Im RF 2

S | |
(qV}

I F 4 M M M

MEM/WB

<
| .
.;% 5
s
- o> WE z =
N~ Ll
| DHEHH- (2o | =
a S o © 2 - x
g 7 2E |© RA2 2 5 2 I I PR
N £ < WA ¥ RD2f—li < £ 8
S [x = 8§
o * WD g
S o A WD
S < A
N
Q
33
SR~ / —
€ < Sign
extension °

27/10/23 version

module 7:

Pipelined processor design

Data path design

begq instruction: ID stage

The beq instruction takes 5 cycles
without using the memory in the MEM stage

#cycle | _1

[

|
or the RF in the WB stage beq x1, x0, 16 |IM RF ; I II
S ray WE x1 z = g | 2
S€p . RD1 = WE =)
S al s 212 X0 I < A LB
= HE WA D% RD2p—u g
B ® = Qo
X WD g
o A WD
“ A
11:7
Sign 16
extension
) +
dir

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Data path design

begq instruction: EX stage

dir+16

The beq instruction takes 5 cycles #cycle | _1 2 | 3 | 4 I s
without using the memory in the MEM stage I 4'
or the RF in the WB stage beq x1, x0, 16 |IM RF 2 I I
S o ; = @
3o RA1 E X bl e = 2
SED » RD1 = = 1
s 0 RA2 & o X w
2 E 5 9 o x0 - biddA >RD
= I= WA % RD2|—i < g
o x =) Qo
WD g
A WD
A
Sign 16
extension °
_ +
dir

Data path design

begq instruction: MEM stage

c

.0

£ The beq instruction takes 5 cycles #eycle| 1| 2 | 3]
- without using the memory in the MEM stage I I
g or the RF in the WB stage beq x1, x0, 16 |IM I RF 2 I
=

AN

NEM/WB

<
o> WE z |I=
s Y) RA1 w
N £ 2 WA ¥ RD2f—li < £ 8
S > 2 = 8 §
@ WD S
§ A WD
- Q A
N
Q
S S
T Q e
S /
€ a

Sign

extension
+

27/10/23 version

module 7:

Pipelined processor design

Data path design

beq instruction: WB stage

[

/

Sign

extension

The begq instruction takes 5 cycles #cycle |_1 2 | 3 | 4
without using the memory in the MEM stage I 4'
or the RF in the WB stage beq x1, x0, 16 | IM RF 2 I
- - < « WB
S > z = o
5o rar VE 1 i e 2 2
3 €D . RD = = 1
=9 RA2 £ = n =
e E 29 < o udds >rop-=
= 2 WA DT RD2p— < g8
T & 5 Q3
WD g
A WD
A

Data path design

jal instruction: IF stage

The jal instruction takes 5 cycles

c
.0
@ _ _ _ #eyclel 11 2 1 3 |
o without using the RF in the ID
(Y) .
& stage, the ALU in the EX stage or . I I
< the memory in the MEM stage jal x4, 32 |Im I I
N
IF 4 M M M
<t
t &
3
v § > WE z |= g
5 F a 38D RAT ™ Rot = we | [
.
N = - : WA DT RD2p— < S8
a N @ = Qo
Q = WD g
§ A WD
L2 A
3
5]
S S
€ & Sign
extension v
+

27/10/23 version

module 7:

Pipelined processor design

The jal instruction takes 5 cycles
without using the RF in the ID

stage, the ALU in the EX stage or

the memory in the MEM stage

ID

dir+4

Data path design

jal instruction: ID stage

#cycle | _1

jal x4,

32 | IM

4' RF

[

Instruction

memory

IE/ID

RA1

2
<

s
>
Register

S
o

S
i

file

A

o

N
ID/EX

4

ALU

EX/MEM

MEM/WB

A SRD

Data

memo

WD

P

Sign

extension

32

dir

Data path design

jal instruction: EX stage

The jal instruction takes 5 cycles #ceycle| 1 | 2 | 3

stage, the ALU in the EX stage or

the memory in the MEM stage

|
without using the RF in the ID I I

c
.0
w
—_
(]
>
™
AN
~~
(@)
A
~
N~
(qV}

jal x4, 32 |m I

4 M | EX ™

dir+4
v é - WE z | 3
| P £ =L
N = 2 WA PF Rrp2| |3 < S8
Q ™ o ~ 1) E
w0 g - x a Qo
|z WD S
o S A WD
L2 A
N 8 4
()
S S
€ a Sign 32
extension °
+
dir

Data path design

jal instruction: MEM stage

The jal instruction takes 5 cycles #eydle T T 2 1T 3 1

without using the RF in the ID
stage, the ALU in the EX stage or I I

the memory in the MEM stage

27/10/23 version

4 _ - 9 MEM

NEM/WB

dir+4
S
S Y ‘g' g‘ RA1 WE : E
3 3 E RAZ G o " 2 F—4H—a _ 2rD
N £ 2 WA ¥ RD2f—li < £ 8
S > 2 = 8 §
g WD S
§ A WD
- Q A
N S 4
Q
S S
T 0 -
SR~ /
€ < Sign
extension ®
+

Data path design

jal instruction: WB stage

The jal instruction takes 5 cycles #ceycle| 1 | 2 | 3

stage, the ALU in the EX stage or

the memory in the MEM stage

|
without using the RF in the ID I I

27/10/23 version

jal x4, 32 |m I

4 M M M
v S > raq WE z |= g
[0 =
?, 8] A § ED 5 RD1 h 5 WE ‘E
0 % e RA2 % o 3 Wid—dA >RDp=
T < S = x < (L}
N = |g WA P % RD2p=—lu % £
S L x o Qo
0 WD g
§ A WD
L2 A
N
()
S S
T Q -
Q .E_ /
€ < Sign
extension °
+

Data path design

Execution diagrams (i)

" An execution diagram allows visualizing the execution of a program in
the pipeline:
o For a given cycle, it visualizes the instructions in execution, in which
pipeline stage each of them is and the resources that are used.

27/10/23 version

#CyC/EI1|2|3|4!5|6|7|8|9|10|
1w x5, 40(x1) IM I RF 2 I DM I RF || S-rrmmmmmrnnneees The 1w instruction ends writing in the RF
I I I Data memory is not being used
I
sub x6, x2, x3 IM I RF . The ALU is being used by
--------------- the add instruction

instructions

add x7, x3, x4

I_=»* The RF is read by the 1w instruction

DMI RF

lw x8, 48 (x1)

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

RF

or x9, x2, x4 v M

The ox instruction is fetched .
from the instruction memory

Data path design

Execution diagrams (ii)

" Alternatively, it is common to use simplified execution diagrams that
show, in each cycle, the stage in which each instruction is.

27/10/23 version

(1 { 2 | 3 J 4 | 5 | 6 1 7 |
lw x5, 40(x1) M I RF :I:% I DM II RF
sub x6, x2, x3 IM I RF 3 I II RF
I > |

1w x5, 40(x1) IF ID EX M | WB
sub x6, x2, x3 |F ID EX M | WB
add x7, x3, x4 IF ID EX | M | WB

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Data path design

: 1st. cycle

Simulation

40 (x1)

lw x5,

IF .

1
(] o
14

w o/l
= Jaysibay

Sign
extension

CITE

[a)
Aiowaw
uonannsuj

<

(Lx)ov ‘Gx m|

pod |
V4N

UoIsIBA €2/01/1¢

ubisap Jossazoud pauljadid

:/ 3|npow

xl

u
;
p

2nd. cycle
s

w ofly 4
= Jasibay

40 (x1)
Sign
extension

ID
RA1
RA2
WA
WD

Simulation

lw x5,

Data path design

(Lx)o¥ ‘Gx m)

............ (3 ardi]
ex ‘gx ‘gx qns

(a]

Aiowaw
uonannsuj

<

pod |
V4N

sub x6, x2, x3
IF .,

ubisap Jossazoud pauljadid

UOISIaN €Z/01/.2 / a|npow

x1+40

niv +

40 (x1)

lw x5,

x1
40

............ V X3/al |
o — [(e]
x

N

a

4

w ofly
= Jasibay

3rd. cycle

X2

1
[a]
(14

A
Sign
extension

ID
RA1
RA2
WA
WD

Simulation

Data path design

€X ‘ZX ‘gx qns

............ (3 ardi]
pX ‘X ‘LX ppe

(a]

Aiowaw
uonannsuj

<

pod |
V4N

IF .

ubisap Jossazoud pauljadid

UOISIaN €Z/01/.2 / a|npow

N — O
..... RLLED v SM/INTV |
_m [op+TX]way
S M w Aowsw
Y = mea
i S —3
2 Ob+1X 10
—
............ v NIN/X3 |
avﬂ (Ce)
c X nv +
%
0 o . X
Vv ¢ E
>
L © E l
O < ’)P
s i T V X3/dl |
N =l £l K]
dd C a a
C O 3 — :
.= NV w o Sa
p m R = Jasibay q AW m
— ™ x
» < < Q0 ¢
U 2 0 S8
- £ >
0 Em—— x
a (V) o
o
o ‘
X ‘€X ‘LX ppe
............ (3 ardi]
(1x)8¥ ‘gx M|
[=)
= Aiowaw
X uonanssuf
% <
om <
>Od |
= Ll
- &N

ubisap Jossazoud pauljadid

UOISIaN €Z/01/.2 / a|npow

x2-x3
WE
I
©
Q

-« MEM 5 WB

X

add x7, x3, x4

x3
#
®

5th. cycle

a
u

;

i

ofly
= Jaysibay q

48 (x1)
E
Sign

extension

Simulation
lw x8,

ID

RA1

RA2

WA

WD

Data path design

(1x)8p ‘gx M|

............ (3 ardi]
X ‘ZX ‘X 10

(a]

Aiowaw
uonannsuj

<

pod |
V4N

IF .

or x9, x2, x4

ubisap Jossazoud pauljadid

UoISIen €Z/01/12 / 3npow

ResSrc

—/
3
g
=
|
S ¥
Mn_ |>I
o
[- S
Q0 A !
o G
2
©
© c
Jelv 1
£ @ c —o _
=) 5 2 a
S . = = 5 .
Ll ! 7] (7]
p m M .. VW quw..mwwm A. nwv‘mAM
- o
M © $358
© |

D =
5l

Aowauw
. uonanasuj

<

: _

»Od

ubisap Jossazoud pauljadid
:/ 3|hpow

UoIsIBA €2/01/1¢

m
Sl llllllllllllllllllllllllllllllllllllll
% V—“Z — OW—
x
| |
3]
S
nmvn
S
3]
S Qrprrnsnnir
N3
D sy E o
A >
5
c S
~l
oT0) < {
oumm
Q R
(¢
© c
o] 0) 1
h "D [EI]]
g = a a
®) Z o n
a U s ajly c S s
E - s IIIIIIIIIIII IIS
p cC M .. VW 1035160y 4 A\WUu‘nn.v.A m
®) -) h
< Q0
U © FEE
= _
a [BTV TR (NRRRRRRRR AR .
D QOA. 2" " o
Mmi O -l N -
>3 [E] |
|
[=)
Aiowosw
. uonanasuj
<
! _
> Od
5
FJEN R,
Q

ubisap Jossazoud pauljadid

UOISIaN €Z/01/.2 / a|npow

oJl}
J19)s1b6ay q

Sign
extension

Controller design
Connection with the controller

. uonanasuj

Pipeline registers are extended to transmit the control signals that are needed through the stages

»Od

ubisap Jossazoud pauljadid
:/ 3|hpow

UoIsIBA €2/01/1¢

Pipelined processor

Connection of the clock and the reset

..
EEEEEEEEEEEEE R sassssnnaguasnsnnannnnnnnnnnnnnnnnt
mamEEEEEEEEEEEA R sssssnsnshassnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnagefl feossssnsnnnnnnnnnnnnnnnnnafl Qoasnunat

27/10/23 version

| -CCITREPPPPrrrePPEr FEEPPRRRPERE S

>
S
g DI 24:20
g

m

RA1

RD1p

2
<

: <
o

o,

»

RS

ID/EX

RD2p=

IE/ID
.....@(. by iy V-t AT .
|
33
Register s
file

[~
S
0
S
1S
(o]
2
g
L.
Q
o
(V)
£
—
Q
2
Q

(gnl
extension

module 7:

rst

Pipelined processor

Full system structure

27/10/23 version

G e L R

A4 g 2
w 1

&
] 9.}
4 L 19:15: WE
a 1A 2§ P 24:201 5 ju
S % g : RA2 3 o = A _ >RD[- 0
@ £ IQI —WA D& RD2E 86
3 = | - 85
5 WD g
2 A Wb
g A
o 11:7 i
Q
©
Q
S
K]
2
Q

module 7:

Sign
extension ®

Hazards

" In a pipelined processor, hazards may appear between the instructions
that are executed simultaneously.

o These never happen in the single-cycle and multicycle processors because in
those cases each instruction is executed after the previous one has ended.

27/10/23 version

" Types of hazards:

o Structural: an instruction needs a hardware resource that is being used by a
previous instruction.

o Data: an instruction must read a data form a register that has not been
written yet by a previous instruction.

o Control: the next instruction must be fetched from memory, but its address
has not been decided/calculated yet by a previous branch instruction.

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Structural hazards

" This pipelined processor does not have structural hazards because:

o There are no shared resources.

 The PC can be incremented (IF stage), the effective address calculated (EX
stage) and the branch condition checked (EX stage) simultaneously.

o Memory is split in two.
* Instructions (IF stage) and data (MEM stage) can be read simultaneously.
o The register file has a triple port.

* 2 registers can be read (ID stage) and 1 written (WB stage) simultaneously.

o Allinstructions go through the 5 stages.
e Adding inactive stages when needed to avoid hazards.

e 1 2 I 3 1 4 1 s 1 6 § [1 2 | 3

RF

ALU

W 6]}

lw x5, 40(x1) IM I RF:I:%I DM II RF IM I RF
sub x6, x2, x3 IM I RF:I:%I II RF IM I RF

© e/

RF

ALU

sub instruction in 5 stages -, _ sub instruction in 4 stages
no structural hazards " Inactive stage tpere js g structural hazard in the RF

Data hazards

" This pipelined processor has data hazards when executing an
instruction that needs to read a register written by any of the 3
previous instructions.

27/10/23 version

sub@ x1l, x3 IM RF
|

and x6, @ x4 IM I

or x7, xS,@

add x8, @@

sw x9, 100@
No data hazards in x2:

The value of x2 calculated by the sub instruction
has been already written in the register file

Data hazard in x2:
. because and, or, add
“ read x2 before sub has written the
i result in it

.
.
““
.
.

RF

and, or, add operate

with an obsolete value
I RF | ..~

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

ALU

Control hazards

" This pipelined processor has control hazards when executing branch
instructions, because the next instruction must be fetched:

27/10/23 version

o Before deciding if the branch is taken or not (beq instruction)

o Before having calculated the destination address, in the case the branch is
taken (beq and jal instructions)

beqg x5, x1, L1 IM

sub x6, x2, x4 RF

1

RF

or x7, x5, x2

[~
3
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Ll: add x7, x3, x4

ALU

There is a control hazard because instructions are fetched
before beq decides if the branch is taken or not

Data hazards

SW solution: inserting nop (i)

|4 " They can be solved by software, inserting 1, 2 or 3 nop instructions

g between the instruction that writes the register and the one that reads it.

- { 12 | 2 | 3 | 4 | s | 6 | 7 | 8 | 9 | 10 | 11 |
sub@ x1l, x3 IM I RF :I:% I II RF

The execution of nop
delays the rest of

. instructions, so that they
. read x2 after it has been
" written by sub

nop IM I RF

nop M

nop

and x6,@ x4
or x7, XS,@
w0, @@

RF

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

1

RF

ALU

ik

IRF

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

: add x7, x3, x4

Control hazards

SW solution: inserting nop (ii)

They can be solved by software, inserting 2 nop instructions after each
branch instruction.

2
=
M
ALU
)
m

beq x5, x1, L1

[l e

nop IM I RF = I DM

The execution of nop delays
s the rest of instructions
»" until beq has decided
RF whether it is taken or not

nop M

sub x6, x2, x4 \l I
° IM RF

=3

ALU
1]
<

ALU

IRF

Data and control hazards

SW solution: inserting nop (iii)

" The software solution has important disadvantages:

o It makes programming harder because it requires inserting nop instructions.

27/10/23 version

o The execution of each nop increases the execution time in 1 cycle.

dnnes L EELLTTTEY 1 cycle
: sub x2, x1, x3 beq x5, x1, L1 |: y

and x6, x2, x4 sub x6, x2, x4
: or x7, x5, x2

5 cycles ; or x7, x5, x2

. add x8, x2, x2

sw x9, 100 (x2) Li:

i 1;7 add x7, x3, X4l;7

sub x2, x1, x3 beg x5, x1, L1

S
D
0
s
~
S
0
Q0
S
s
S
B
Q
£
—
Q
2
Q

N :
2 nop nop proseeeee 1+2 = 3 cycles
3 nop nop
S : nop sub x6, x2, x4
5+3 =8 cycles o and x6, x2, x4 or x7, x5, x2
: or x7, x5, x2 ...
add x8, x2, x2 Ll:
sw x9, 100 (x2) add x7, x3, x4

e 7 7

Data hazards

HW solution: forwarding (i)

" There is a hardware solution that avoids this overhead given that:
o The sub instruction uses the ALU in cycle 3 to calculate the subtraction.

27/10/23 version

o The following instructions need the data in cycles 4, 5 and 6.

o The data is available since cycle 4, and therefore it can be forwarded
without waiting to read it from the RF.

(. 1 1 2 F 3 ¥ 4 1 5 | 6 | 7 | 8 | 9 |

sub x2, x1, x3 IM I RF :I:% I II RF

and x6, x2, x4 M I RF :?r.') I

1

RF

RF

or x7, x5, x2

2
=
ALU
o
<

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

RF

add x8, x2, x2 IM I RF

ALU

sw x9, 100 (x2) M RF

ALU

Data hazards

HW solution: forwarding (ii)

" Each hazard is solved in a different way:

o sub - and: signal paths are added to forward the data from the MEM stage
to each of the ALU inputs (EX stage)

27/10/23 version

e I 2 f 3 | 4 | s | e | 7 | 8 |
[= I The MEM stage has the value of x1-x3
sub @ x1, x3 M RF = 1 RF | Crovreeeees in the EX/MEM pipeline register and it is
I I forwarded to the ALU through the new path

| " | = |
and X6, @ s 3 1 l? i The other operand is read

I I from the ID/EX pipeline register

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Data hazards

HW solution: forwarding (ii)

" Each hazard is solved in a different way:

o sub - and: signal paths are added to forward the data from the MEM stage
to each of the ALU inputs (EX stage)

o sub - or: signal paths are added to forward the data from the WB stage to
each of the ALU inputs (EX stage)

27/10/23 version

e I 2 f 3 | 4 | s | e | 7 | 8 |
[= The WB stage has the value of x1-x3
M RF = | RF [Croveeeeees in the MEM/WB pipeline register and it is
I forwarded to the ALU through the new path

II RF
I I Re | < The other operand is read

2

x

M
ALU

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

I from the ID/EX pipeline register

2
L 4
%

Data hazards

HW solution: forwarding (ii)

" Each hazard is solved in a different way:

o sub - and: signal paths are added to forward the data from the MEM stage
to each of the ALU inputs (EX stage)

o sub - or: signal paths are added to forward the data from the WB stage to
each of the ALU inputs (EX stage)

o sub - add: it is solved by writing the RF at the end of the clock cycle first
half, so that it can be read in the second half.

27/10/23 version

6 | 7 | 8 |
The value x1-x3 goes through the pipeline
) GLLEELTEL ~ being written and read from the RF, the ALU
< gets it from the ID/EX pipeline register

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

3 IRF

RF

Data hazards

HW solution: forwarding (iii)

" In the case a register can be forwarded from MEM and WB:

o It has to be done from the MEM stage, since this has the most recent
value of the register causing the hazard.

27/10/23 version

2 1 2 {1 3 1 4 | s | 6 1 7 |

I " : I
IM I RF '? RF | Geeeeeeees The WB stage has the x1-x3 value

I I < The or instruction must operate
I I RF with the x6+x4 value

I I RF | G--eeeeeeee The MEM stage has the x6+x4 value
|

2
=4
AL£17

" The %0 register is never forwarded:

e 1 2 I 3 | 4 | s | 6 | 7 |

sub @ x1l, x3 IM I RF :I:% I I RF | Grrrrrenees The MEM stage has the x2-x3 value

| il —
add x6, @ x4 i rE =) RE | Goverenen _e add instruction must operate
I < I I with value 0

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Data hazards

HW solution: forwarding (iv)

In the simplified execution diagrams, forwarding is indicated as
dependencies between stages:

{1 | 2 1 3 | 4 | s | 6 | 7 |

The value of x2 is forwarded:

b 1, x3 I 4 i

= @ * * S I A ‘ il I » from the MEM stage of sub
P + tothe EX stage of and

| I 4' ;
and x6 @ x4 IM I RF l} RE The value of x2 is forwarded:
' I —|—@ I i -+ from the WB stage of sub
|

""""" to the EX stage of oxr

| ¥ S FT A

sub x2, x1, x3 IF 1D EX WB
x2 K
and x6, x2, x4 IF ID EX g M ::WB
x2 l';

or x7, x5, x2 IF ID |[YEX | M | WB

Pipelined processor

+ forwarding: data path

module 7:

[~
S
0
S
1S
(o]
2
g
L.
Q
o
(V)
£
—
Q
2
Q

.

- -

- L)

. . 5
. o

By inverting the clock input,

The RF loads at the falling edge
(half cycle of the rising edge)

s : B | Eaes————] R I X s
iel oINS H :
(%) H H H
o : 4 . : 3
= : : : :
™ H . . H
AN H H H
S : : i
N : : 3
AN H H :
& :
: 6:0 :
U I AP I B A T é W/
Y §
S 'E;g' ; ra1 WE RD1H., 2
s 9 = RA2 « [0
g E : 22 ppoH~
= g — \W A 8"’:
e x
2 Hwo

A forwarding path is added
from the WB stage to the EX stage

.
- %
.
4 . - .
A : + :
. .
R : P s
R .
- .
¢)
.
O —) .
o P .
R4 . " “
v ; . .
o 4% b ey
* Ad Ll
° . . .
P s 0y

. Ol .

** . .

o* . '- .

A forwarding path is added
from the MEM stage to the EX stage

MUX are added to the ALU inputs

Pipelined processor

Forwarding simulation: 3rd. cycle

27/10/23 version

or x7, x5, x2 and XG,@ x4 sub@ x1, x3 : :
IF m ©® g EX gMEMpWB

HAZARD 1: the x2
read from the RF is obsolete

«1x2
ra1 WE ppil2

memory
o

s 7
> 8
Register

i~

S

O °
—

(7]

£

file

S
o

or x7, x5, x2_|
IF/ID

o> 2

6 2

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Sign
extension ?

Pipelined processor

Forwarding simulation: 4th. cycle

c
.0
w
—
()
>
™
N
~~
o
—
~
N~
AN

add x8, x2, x2 or x7, xS,@ and x6, @ x4 Esub@...

IF . . D . EX " MEM ., WB

HAZARD 2: x2 is still obsolete

S
e WE
< O S O RA1
4 e RA2 2
$ S 28
N < ol WA D=
o N1Em ()
S X X x
Q ol | WD
Q x| | %
S 3| |- o
.S sl 1°
N 8 11:7
()
S S
T Q ’,
SER=1
€

Sign "x‘
extension © . HAZARD 1:

>+ “ x2 is forwarded
from MEM

Pipelined processor

Forwarding simulation: 5th. cycle (1st. half)

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

sw x9, 100(x2) : add x8, x2, x2 : or x7, xs,@ i and x6 ... : sub@.

IF , o D o EX - MEM - WB

HAZARD 3: HAZARD 2: x2 is
x2 Is written
forwarded from WB
in the middle of the cycle . - (x1-x3) & x4
x
S - i
K < I=
8 ";; g q| ‘5; () ol b gl A E*RDI- = X1 0,
K g5 ¥ = RDA—p g5
7] - =
Q - g
§ 2 L. WD
.8 2 - A
N S Z 8 7 6]]2
v g -
: .: — —
T Q
S Q
€ &

Sign
extension ?

Pipelined processor

Forwarding simulation: 5th. cycle (2nd. half)

c
.0
w
—
()
>
™
N
~~
o
—
~
N~
AN

sw x9, 100(x2) : add xs,@@ or x7, x5, x2 i and x6 ... : sub@.

IF , o D 4 EX - MEM » WB

HAZARD 3: the x2 read from the RF
is already updated
. A
....... “:“" (x1-x3) & x4
A """" ““‘ 5
S 1 o** - i
S WE coabelil % |G = 2

g’l U*A gg D— RA1 “ Bye 1 —I= WE E—l

3 = se | RA2 & :";ﬂ _m E E =1 x1-x3

S g g N u9o RDZI,X— 5 et A SRDP 0

N = a3 [= WA D= it 83

e 5= T

2 - WD S

Q [}) WD

3 x
.8 2 6 A
NS 7 8 7 6
m -
S S L L
32

extension ° #
+

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Pipelined processor

Forwarding unit

" The forwarding unit is a combinational circuit that controls the
forwarding MUX so that the ALU can operate with data:

@)

Read from the RF and available in the ID/EX forwarding register.

o Available in pipeline registers of the following stages (EX/MEM or MEM/WB)

" In order to behave correctly, it must know:

©)

O O O O O

Rs1E: number of source register 1 of the instruction in the EX stage.

Rs2E: number of source register 2 of the instruction in the EX stage.

RdAM: number of the destination register of the instruction in the MEM stage.
BRwrM: whether the instruction in the MEM stage writes in the RF or not.
RAW: number of the destination register of the instruction in the WB stage.
BRweW: whether the instruction in the WB stage writes in the RF or not.

........... SESRRNEN [g
| |
|
|
+
>
»
.. d..... gpremioy
aflssnsnnsnnnsnnnnguunnnnnnf o uensnnnnnnafuannnafiun Y I thmsom
»
|
s
ally n.m
sopsiboy S .WMA
s
S u
O &
N o
3
Is)
O =S
O S
& 3
p .. ai/di
ln -
c
©C S a
e o0 Aowsw
c = uononsuj
[1] |m
@ = _
-
Q o <
ommm LL > Od
Q. +
... 2

ubisap 40ssazoud pauijadid
:/ 3|hpow

UoIsIBA €2/01/1¢

27/10/23 version

<
S
0
S
1S
(o]
2
g
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Pipelined processor

+ Forwarding unit: status signals

. ¥
S
hd b S‘ RA1 WE RrD1 1
] A S E D= 1 W
Q S o) ju
= RA2 = a
g E 22 pp2H~
= g — WA 8) =
e x
WD
; x“‘ Sig"“";’ : : |
: 1" extension : :
L e A P +
----- :: == -:-‘.‘nt--------..-l E E
o TV — \ Vv v :
The pipeline register is extended to transmit Same for the MEM stage : o .
. 4 L% : S ¥ E
the number of the source registers to the EX stage e 357 7 ' B 3iiB .
o g § """" : @: @:
Source registers of RCCL T e SR R S

Destination register and write to .-

the instruction in the EX stage)) I
RF signal of the instruction in the WB stage

module 7:

27/10/23 version

pPCc<{

[~
S
0
S
1S
(o]
2
g
L.
Q
o
(V)
£
—
Q
2
Q

Pipelined processor

+ Forwarding unit

>
Instruction

memory

IF/ID

“(CETTTTTIrr- S TETEH FERTRTIRPEF

rRa1 WE Rro1f
N
2

"A2 B e rook
14

WD

ID/EX

(gnl
extension

Forwarding
unit

Pipelined processor

Forwarding unit design (i)

" A data must be forwarded to the input A of the ALU:

o From the MEM stage, if the destination register of the MEM stage (RdM) will be
written (BRwrM) and coincides with the source register of the EX stage (Rs1E).

27/10/23 version

4)
FOrwardA é I:f(BRWFM & (RSlE = RdM)) then (10) S CLLTETETEY Forwardjngfrom MEM

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

- J

Pipelined processor

Forwarding unit design (i)

" A data must be forwarded to the input A of the ALU:

o From the MEM stage, if the destination register of the MEM stage (RdM) will be
written (BRwrM) and coincides with the source register of the EX stage (Rs1E).

o From the WB stage, if the destination register of the WB stage (RdW) will be
written (BRwrW) and coincides with the source register of the EX stage (Rs1E).

* This condition is only checked if the previous one is not met, because when the data
can be forwarded from both stages, it has to be taken from the MEM stage.

27/10/23 version

4)
ForwardA é If(BRWFM & (RSlE = RdM)) then (10) S CLLTETETEY Forwardjngfrom MEM
EISIf(BRWFW & (RSlE = RdW)) then (01) < Forwardingfrom WB

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

- J

Pipelined processor

Forwarding unit design (i)

" A data must be forwarded to the input A of the ALU:

o From the MEM stage, if the destination register of the MEM stage (RdM) will be
written (BRwrM) and coincides with the source register of the EX stage (Rs1E).

o From the WB stage, if the destination register of the WB stage (RdW) will be
written (BRwrW) and coincides with the source register of the EX stage (Rs1E).

* This condition is only checked if the previous one is not met, because when the data
can be forwarded from both stages, it has to be taken from the MEM stage.

27/10/23 version

o Register x0 is never forwarded because it has a constant value of 0.

4)
ForwardA <& if ((Rs1E # 0) & BRwrM & (Rs1E=RdM)) then (10) g.weeeeen Forwarding from MEM
elsif((Rs1E # 0) & BRwWrW & (Rs1E =RdW)) then (01) eeeeeeee Forwarding from WB

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

- J

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Pipelined processor

Forwarding unit design (i)

" A data must be forwarded to the input A of the ALU:

o From the MEM stage, if the destination register of the MEM stage (RdM) will be
written (BRwrM) and coincides with the source register of the EX stage (Rs1E).

o From the WB stage, if the destination register of the WB stage (RdW) will be
written (BRwrW) and coincides with the source register of the EX stage (Rs1E).

* This condition is only checked if the previous one is not met, because when the data
can be forwarded from both stages, it has to be taken from the MEM stage.

o Register x0 is never forwarded because it has a constant value of 0.

" Otherwise, do not forward.

g ForwardA <& if ((Rs1E # 0) & BRwrM & (Rs1E=RdM)) then (10) g.weeeeee Forwarding from MED
elsif((RS1E # 0) & BRwWrW & (Rs1E =RdW)) then (01) eeeeeeee Forwarding from WB
else (00) S CEEEEEEEED Do not forward

_ J

" Same for the forwarding unit to the input B of the ALU
o Replacing RS1E with RS2E.

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Pipelined processor

Forwarding unit design (ii)

ForwardA & if ((Rs1E # 0) & BRwrM & (Rs1E =RdM)) then (10)
elsif((Rs1E # 0) & BRwrW & (Rs1E = RdW)) then (01)
else (00)

Truth table

RdM

ForwardA

RslE#0

00 (no forwarding)

00 (no forwarding)

01 (WB forwarding)

00 (no forwarding)

< | X |~ | o | > IRs1E = RdW

R |Oo | X |X | XJIRs1E

10 (MEM forwarding)

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Pipelined processor

Forwarding unit design (ii)

ForwardA & if ((Rs1E # 0) & BRwrM & (Rs1E = RdM)) then
elsif((Rs1E # 0) & BRwrW & (Rs1E = RdW)) then
else

ForwardB & jf ((Rs2E # 0) & BRwrM & (Rs2E = RdM)) then
elsif((Rs2E # 0) & BRwrW & (Rs2E = RdW)) then
else

Truth table Truth table

RdM
RdM

ForwardA

RslE#0

00 (no forwarding)

(10)
(01)
(00)

= RdW

(10)
(01)
(00)

ForwardB

00 (no forwarding)

00 (no forwarding)

00 (no forwarding)

01 (WB forwarding)

01 (WB forwarding)

00 (no forwarding)

00 (no forwarding)

< [< |~ | ©o| < IRs1E = RdW
R |O | X | X | X IRs2E

R |Oo | X |X | XJIRs1E

10 (MEM forwarding)

< | < |~ | ©o| > IRs2E

10 (MEM forwarding)

Pipelined processor

Forwarding unit design (iii)

EJ /
& Rs1E —= o
§ 5II c I
N Rs2E —7 ™ z > ForwardA
RdM —f £)
o
RdW —=f o
BRwrM ! g 2/ > ForwardB
BRwrW 2
. Truth table Truth table
(=) T -
g s | 3 s | 2
i SEE |22 Sls|z|8|2
a w E DB: I I ForwardA w n;: E I I ForwardB
§ £ o |a| g |o| o o8|«
:5. o o o o
E E 0 X X X X 00 (no forwarding) 0 X X X X 00 (no forwarding)
§ E. 1 0 1 X 0 00 (no forwarding) 1 0 1 X 0 00 (no forwarding)
1 0 1 X 1 01 (WB forwarding) 1 0 1 X 1 01 (WB forwarding)
1 1 X 0 X 00 (no forwarding) 1 1 X 0 X 00 (no forwarding)
1 1 X 1 X 10 (MEM forwarding) 1 1 X 1 X 10 (MEM forwarding)

Pipelined processor

Forwarding unit design (iv)

BRwrW BRwrW

_D—-) ForwardA, RdW _D—-) ForwardB,

RiM = - = ,' > ForwardA, RaM — B _D—-) ForwardB,

c
.0
w
—
()
>
™
N
~~
o
—
~
N~
AN

BRwrM BRwrM
. Truth table Truth table
D 1 -
< o s | 2 o = | =
? H % E c | 2 " % % 2|2
2 S22 ForwardA Wl B3| n ForwardB
g 2| @ | @ | ¢ | ¢ | o | & ||«
g € | < X |
,i:.i E 0 X X X X 00 (no forwarding) 0 X X X X 00 (no forwarding)
g E 1 0 1 X 0 00 (no forwarding) 1 0 1 X 0 00 (no forwarding)
SN
1 0 1 X 1 01 (WB forwarding) 1 0 1 X 1 01 (WB forwarding)
1 1 X 0 X 00 (no forwarding) 1 1 X 0 X 00 (no forwarding)
1 1 X 1 X 10 (MEM forwarding) 1 1 X 1 X 10 (MEM forwarding)

Data hazards

HW solution: 1w hazard

" There is a kind of data hazard that requires a special treatment:

o When a 1w instruction loads a register that is read by the following
instruction.

27/10/23 version

|
1w @20(::1) IM I RF =&-’ I MDI RF
| > |
and x6,@x4 M I RF = I

" The required data cannot be forwarded because:

|
IRF

o The 1w instruction reads the data from memory in cycle 4.
o The following instruction needs that data in the same cycle.

4 | 5 | 6 |

MD II RF
I I RF

| 1 | 2 | 3

lw @20(x1) M I RF
and XG,@ x4 M I RF

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

ALU

ALU

Data hazards

HW solution: 1w hazard, stalling (i)

" The solution implies stalling the pipeline during one cycle in order to delay
the instruction that requires the data, so that it can be forwarded.

o Cycle 3: and (in ID), the hazard is detected.

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Data hazards

HW solution: 1w hazard, stalling (i)

" The solution implies stalling the pipeline during one cycle in order to delay
the instruction that requires the data, so that it can be forwarded.

o Cycle 3: and (in ID), the hazard is detected. Instructions and , or are stalled
and a nop “bubble” is inserted in the EX stage.

(. 1+ 2 | 3 J 4 1 5 | 6 I 7 | 8 |

1w x2, 20(x1) IM I Re [1 S22 4 To stall the ID stage, register IF/ID is NOT loaded in cycle 3

. To avoid the execution of and in the next cycles and prevent the update of x6,
56 2 1 IM }%{ RE mL the ID/EX register is deleted by inserting a “bubble”

= To stall the IF stage, the PC is NOT loaded in cycle 3

Data hazards

HW solution: 1w hazard, stalling (i)

" The solution implies stalling the pipeline during one cycle in order to delay
the instruction that requires the data, so that it can be forwarded.

o Cycle 3: and (in ID), the hazard is detected. Instructions and , or are stalled
and a nop “bubble” is inserted in the EX stage.

27/10/23 version

o Cycle 4: 1w reads the data from memory; and , or resume.

4 | s 1 6 | 7 1 8 |

N Grrrreneennrnnnns 1w reads the data that produces the hazard
from memory

|
P TY-S, S} M }#{ RE ,m9_| S GRELEEELELEEEEEEELD The “bubble” advances, leaving the EX stage inactive

and x6, x2, x4 r RS :I : The and, or instructions repeat in cycle 4

whatever they did in cycle 3:
or x7, x5, x3 @| |M~| IM

1w x2, 20(x1) IM I RF g

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

* The ID stage reads the x2 and x4 registers
* The IF stage fetches the or instruction

Data hazards

HW solution: 1w hazard, stalling (i)

" The solution implies stalling the pipeline during one cycle in order to delay
the instruction that requires the data, so that it can be forwarded.

27/10/23 version

o Cycle 3: and (in ID), the hazard is detected. Instructions and , or are stalled
and a nop “bubble” is inserted in the EX stage.

o Cycle 4: 1w reads the data from memory; and , or resume.
o Cycle 5: the data is forwarded from the WB stage of 1w to the EX stage of and.

4 | s 1 6 | 7 1 8 |

1w x2, 20(x1) IM I RF g

|
The “bubble” advances, leaving the MEM stage
. Rl D P : :
w220, Inactive
and x6, x2, x4 |~ RF S ITTITIIIIT The data is forwarded

or x7, x5, x3 @||M~| IM I RF:I

[~
3
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Data hazards

HW solution: 1w hazard, stalling (i)

" The solution implies stalling the pipeline during one cycle in order to delay
the instruction that requires the data, so that it can be forwarded.

27/10/23 version

o Cycle 3: and (in ID), the hazard is detected. Instructions and , or are stalled
and a nop “bubble” is inserted in the EX stage.

Cycle 4: 1w reads the data from memory; and , or resume.
Cycle 5: the data is forwarded from the WB stage of 1w to the EX stage of and.
Next cycles: the pipeline behaves as expected.

O O O O

There is a one cycle penalty due to the 1w hazard.

I 1 | 2 | 3 | 4 | s | 6) 7 | 8 |

|
1w x2, 20(x1) |m I RF :I:B I
P TY-S, S} M }#{ RE m%} q <--- The “bubble” advances, leaving the WB stage inactive

I RF
The and, or instructions are

I i Executed as expected
I RF :

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

and x6, x2, x4

ALU

or x7, x5, x3 @||M~| IM I

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Data hazards

HW solution: 1w hazard, stalling (ii)

In the simplified execution diagrams, stalls are indicated marking the
stages that are stalled (“bubbles” are implicit):

e 1 2 1 3 | 4 | s | 6 | 7 | 8 | 9 |

1w x2, 20(x1) IM I RF 3 I DM RF

and, or are stalled
during one cycle

and x6, x2, x4

and, or resume
repeating whatever they
did in the previous cycle

or x7, x5, x3

1
1w x2, 20 (x1) IF
and x6, x2, x4 |Ds
or x7, x5, x3 |FS |F EX M WB
' : l‘.------’:
add x8, x2, x2 IF | ID | EX | M | WB
|

The next instruction is fetched
after resuming and , or

Pipelined processor

+ 1w hazard: data path

c
.0
w
—_
(]
>
™
AN
~~
(@)
A
~
N~
(qV}

“(CETTTTTIrr- S TETEH FERTRTIRPEF

m

RA1

PC<
>
Instruction

memory
=)
| |
|
S s3
S > B
Register s
ID/EX

()]
?‘ = = RD2Zf
: m
c . H t
> P . - -
(] E e : : :
B -] : : : — §
= L : : ¢ :
3 B Sign :
L) - P H
Y s extension : : :
S : A o P + s
Q. PO D T 'TT PYTTTTLLLL LI (U]
.. . IN
N E o
L s H K
% % “. ’o“ v."
o .8‘ ‘- ’0’ “‘
€& T v
. *> *
- 0. 0'
“Q“’ 0“‘

Load d/sable'ports a{’e added A delete port is added to insert
to stall instructions " ”
in the IE and ID stages the nop “bubble” in the EX stage
9 (flushing the instruction in ID)

27/10/23 version

or

x7, x5, x3

IF .

module 7:

S
D
0
s
~
S
0
Q0
S
s
S
B
Q
£
—
Q
2
Q

Pipelined processor

Stall simulation: 3rd. cycle

and x6, @ x4

ID

1w @ 20 (x1)

EX

 MEM

HAZARD:
-+ X2 will be obsolete,
+" and, or are stalled

'E S WE 1lx_2 ’#. 2z B g 2
:E—X +a S8 RAT RIS i = = we | [EIL_];
a | = — Eﬂ < -
§ g R RA2 .‘3 2 RD2 ’(_4|>< 3 YA SRD = 0
A a5 WA E i 7 =4 P s
: ~ WD 3 2
- WD
© ° 2 1 A
6 2
“.“? a -
it (gnl_ 20
PC and IF/ID extension
arenot | {1 > +
loaded i - 1

ID/EX is deleted

[
)
s

.
s
e
s

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

or

x7, x5, x3

IF .,

Pipelined processor

Stall simulation : 4th. cycle

and x6, @ x4

ID

(3

EX

WB

PC

memory

>
Instruction

M M M
HAZARD:
x2 is obsolete
but and, or resume x1420 S |
....................... — 4
“- L et T r = ea : : d
v) | G =] e D> X
rar "E roitdF IN] 0 9 =Bl T
9 |Z I - .
°>°< RA2 n o RDZX4I - I.u"-A E‘b‘ 0
= WA D= wl 4 i < 30
X L x E Pr— ‘QB g
5| WD i g
[0 WD
© 2 0
6 2
4 — —
(gnL -
extension

Pipelined processor
Stall simulation : 5th. cycle (1st. half)

C
Re)
L
(0] .
>
Q : : : :
2 add x8, x2, x2 or x7, x5, x3 and x6, @ x4 1w @
N : : : :
IF ., - ID — EX « MIEM ¢ WB
<
x
211o
o
o
s 11170 e LY emmmmrEa,, R - ls! o
.° .0‘ . .E. E —_—
§ SHH» 55 o : =Y 155]
3 S O ol e RA2 8 =l I s
S 2 & 9% 2 2 prp2 N\ +JA _ SRD y
~ : wA 25 T 1 § s
S N1\)) \I ® £
S | |- N o WD k-
S 3| |° - = 2 T
N S 117 7 O A2 2
o 9 - - s
L 24:20 3 4 R LS
S 0 5
g8
extomeion : . HAZARD:
>+ “ x2is forwarded
i i from MEM

Pipelined processor
Stall simulation : 5th. cycle (2nd. half)

c
.0
w
—
()
>
™
N
~~
o
—
~
N~
AN

add x8, x2, x2 or x7, x5, x3 and x6,@x4 C} : 1w @

IF , o D 4 EX ° MEM . WB

<
xX
21]o
o
o
S - =))
S x5 e =
S 9 5 ra1 VE rotpd [—IN] g = EIE 2
(&} 1 WE =
3 -0 (] [RA2 %o pnobdl “HHA _ 2rRoHE—
o = ><"|9 g wa o RPIReT &S
@ ol | WD S 8
Q X X WD +
S | |- £ e
o 'g (o] 5 2 .g
N S 11:7 7 6 0 2 S
L g 24:20 4 I =
: .: . — —
T O
SER=Y
S (gnl_
extension ° #
+

Pipelined processor

Stall simulation : 6th. cycle

c
.0
w
—_
(]
>
™
N
~~
o
—
~
N~
AN

sw x9, 100(x2) : add x8, x2, x2 ! or x7, x5, x3 i and x6 ... : @

IF ., o D q EX - MEM » WB

Mem[x1+20] & x4
S m
Ke) x2
< 4 3? ra1 E RD13
3 28 [§ RAZ Zo ppo2
N = 8 WA D& T°F |ﬁ {
3 ol= 2 =)
Q - WD
Q (=]
8 . 4)
N 8 o 8
m -
38
SN Sign
extension ?

Mem|[0]

Pipelined processor

Hazard unit

" The hazard unit is a combinational circuit that determines if the IF and ID
stages of the pipeline have to be stalled, controlling whether:

o The PC and the IF/ID pipeline register have to be loaded or not.

27/10/23 version

o The ID/EX pipeline register must be deleted or not.

" In order to behave correctly, it must know:

o If thereis a 1w instruction in the EX stage.
* Checking if ResSrcE = 0 and BRwrE =1 (only 1w meets this)

o RdE: number of the destination register of the 1w instruction in the EX stage.

o Rs1D: number of source register 1 of the instruction in the ID stage.
o Rs2D: number of source register 2 of the instruction in the ID stage.

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Pipelined processor
+ Hazard unit: control signals

m v. x%_ OLGW—UBA. 'S AT T Jysnjq

]
Qa 0o
(14 (14

w ol

2 Joysiboy S

| ®J
Sign
extension
A

........... - alers
1
(a]
Aiowaw
uononnsuj
<
: ;
> Jd - CULTPETTTTEPEPEPTPTEPEPEPTTTETEPEITTTOTEPEPITIOTEE PEPRRTRPEPD - JJ|els
... 25

ubisap 40ssazoud pauijadid

UOISIBA €2/01/1Z / 3inpow

Pipelined processor

+ Hazard unit: status signals

c : :
kel : :
7 : :
[0) : : :
> = H :
) : - =
Q) : : :
S : :
= : : ;
B = : s
& :
bl < R : v
\'4 S :
2 : WE
hd b 5 : RA1 RD1H..
=9 : RA2 2 S
g E ; 22 pp2H~
A = a —tWA D&
D €
WD
c
>
2
S
L
g Sign
g extension
S A o
. Q_ lﬁ
N S k)
v g A
S = : :
T 9 : : .
ch 2 : id :
a : : :
. i vV V i
L S g o 4 f
8 s — 9 Y ? :
& & ST 27 e 3 .-
Source registers of ‘\""‘“"“ . . ; ¥
. . g P Destlnatlon re ISterO -...: -- .--...--..--....
the instruction in the ID stage g f To detect if there is a 1w

the instruction in the EX stage : instruction in the EX stage

o/l <
J19)s1b6ay

| ®J
Sign
extension
A

aw/di

1
(a]

Alowaw
uononnsuj

<

: _

Pipelined processor
+ Hazard unit

ubisap 40ssazoud pauijadid
:/ 3|hpow

UoIsIBA €2/01/1¢

Pipelined processor

Hazard unit design (i)

" The pipeline must be stalled during one cycle due to a 1w hazard if:

o There is a 1w instruction in the EX stage
* Checking if ResSrcE = 0 and BRwrE =1 (only 1w meets this)

27/10/23 version

-

Stall <& if ((ResSrcE = 0) & BRwrE)then(1) <= Stall the pipeline

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Pipelined processor

Hazard unit design (i)

" The pipeline must be stalled during one cycle due to a 1w hazard if:
o There is a 1w instruction in the EX stage
* Checking if ResSrcE = 0 and BRwrE =1 (only 1w meets this)

o The destination register of the EX stage (RdE) coincides with one of the source
registers of the ID stage (Rs1D and/or Rs2D).

27/10/23 version

-

Stall & if ((ResSrcE = 0) & BRwrE & ((Rs1D = RdE) | (Rs2D =RdE))) then(1) <=----- Stall the pipeline

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Pipelined processor

Hazard unit design (i)

" The pipeline must be stalled during one cycle due to a 1w hazard if:

o There is a 1w instruction in the EX stage
* Checking if ResSrcE = 0 and BRwrE =1 (only 1w meets this)
o The destination register of the EX stage (RdE) coincides with one of the source
registers of the ID stage (Rs1D and/or Rs2D).

" Otherwise, the pipeline is not stalled.

27/10/23 version

-

Stall & if ((ResSrcE = 0) & BRwrE & ((Rs1D = RdE) | (Rs2D =RdE))) then(1) <=----- Stall the pipeline

else (0) < Do not stall the
pipeline

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Pipelined processor

Hazard unit design (i)

" The pipeline must be stalled during one cycle due to a 1w hazard if:
o There is a 1w instruction in the EX stage
* Checking if ResSrcE = 0 and BRwrE =1 (only 1w meets this)

o The destination register of the EX stage (RdE) coincides with one of the source
registers of the ID stage (Rs1D and/or Rs2D).

27/10/23 version

" Otherwise, the pipeline is not stalled.

" When a stall happens:
o Disable the load of the PC and the ID/IF pipeline register.

-

Stall & if ((ResSrcE =0) & BRwrE & ((Rs1D = RdE) | (Rs2D = RdE))) then(1) <= Stall the pipeline
else (0) < Do not stall the

pipeline
StallF & Stall
StallD < Stall

_ J

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Pipelined processor

Hazard unit design (i)

" The pipeline must be stalled during one cycle due to a 1w hazard if:

o There is a 1w instruction in the EX stage
* Checking if ResSrcE = 0 and BRwrE =1 (only 1w meets this)

o The destination register of the EX stage (RdE) coincides with one of the source
registers of the ID stage (Rs1D and/or Rs2D).

" Otherwise, the pipeline is not stalled.

" When a stall happens:
o Disable the load of the PC and the ID/IF pipeline register.
o Delete the ID/EX pipeline register.

-

Stall & if ((ResSrcE =0) & BRwrE & ((Rs1D = RdE) | (Rs2D = RdE))) then(1) <= Stall the pipeline
else (0) < Do not stall the

pipeline
StallF & Stall
StallD < Stall

KFIushEéStaII)

Pipelined processor

Hazard unit design (ii)

§ Stall & if ((ResSrcE = 0) & BRwrE & ((Rs1D = RdE) | (Rs2D = RdE))) then(1)
S else (0)
StallF & Stall
StallD & Stall
FlushE & Stall
BRwrE Rs1D RdE Rs2D ResSrcE
5 5 5 2 L
RdE —f
S
2 Rs1D —2f —> StallF a a
Q
E Rs2D —=2f > StallD
g ResSrcE 2,' S FlushE
g_ BRwrE
K o
KT
39
o Q
SN
\ 4 \ 4

StallF StallD FlushE

Data hazards

HW solution: additional optimizations (i)

" The proposed solution sometimes performs unnecessary stalls.

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

" When x0 is the destination register of the memory load.

o Since instructions as 1w x0,20 (x1) are meaningless, it is not worth adding
the hardware logic to handle these cases.

" When a 1w instruction is followed by a sw instruction that stores the
register loaded from memory by the former.

S o Itis a more common case because it is used e.g. to copy arrays.
(%)
Q
s o The data, available since cycle 5, could be forwarded without stalling.
2
3
S
. 3
N
o @ e I 2 | 3 | 4 | s | 6 |
53 | > |
S 1w @ 20 (x1) IM I RF 2 I DM RF

3 }9 K,

SwW @ 20 (x3) IM

—

Data hazards

HW solution: additional optimizations (ii)

" To avoid the penalty in the 1w - sw case, it would be enough to:

o Add a MUX at the memory data input, so that forwarding could be
performed from the WB stage to the MEM stage.

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

o Redesign the forwarding and hazard units.

Forwarding happens if: there is a 1w instruction in the WB
ForwardM stage, a sw instruction in MEM and the destination register
of the former coincides with the source register of the latter

_— -
g
§: ForwardM & if ((ResSrcW = 0) & BRwrW
S — 2 & MemWrM
3 .) o ! & (RAW = Rs2M)) then (1)
3 = : © S'RD"lg y
S 2 : s |IE else (0)
LS w Q - =
o
'&:J 2 _-E W Stall < if ((ResSrcE = 0) & BRwrE
’é § & ((Rs1D = RdE) | (Rs2D = RdE))
& IMemWrD) then (1)
- - else © (0)

Do not stall if there is a
sw instruction in the ID stage

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Data hazards

HW+SW solution: code reordering

Given an assembly program, stalls due to data hazards by 1w
instructions are unavoidable by HW.

o But they can be avoided by reordering the code, so that a 1w instruction is
never followed by another one that uses the loaded register.

o This is one of the optimizations applied by the compilers.

a + b;

e =d + b;
wuﬂ;;;ﬁ Eﬁ;;ﬁ
b—> x2 e > x5

c—> x3

* *
--

Assignment of variables

direct compilation

optimized compilation

1w x1, 0(x31)
1w x31

add x3, x1,
sw x3, 8(x31)

2 stalls

7

O stalls

Control hazards
HW solution: stalling

" One solution consists in stalling the pipeline during 2 cycles to delay
fetching new instructions until the branch is decided.

o Cycle 2: beq (in ID), the control hazard is detected.

27/10/23 version

sub x6, x2, x4 IM

[~
3
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

|
beqg x5, x1, L1 IM + RF :I

module 7:

Control hazards
HW solution: stalling

" One solution consists in stalling the pipeline during 2 cycles to delay
fetching new instructions until the branch is decided.

o Cycle 2: beq (in ID), the control hazard is detected. The sub instruction is
stalled and a nop “bubble” is inserted in the ID stage.

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

S
Ay
§ T 27 3T o 1T 5 1T 6 | 7 T 8 |
1S
5 I
§ beqg x5, x1, L1 IM I RF :I
<)
. _E. To avoid the execution of sub in the next cycles and prevent the
'Q_, Q @ M m L update of x6, the IF/ID register is deleted by inserting a “bubble”
S _: I4 I4
33 A
€ &

= To stall the IF stage, the PC is NOT loaded in cycle 2

Control hazards
HW solution: stalling

" One solution consists in stalling the pipeline during 2 cycles to delay
fetching new instructions until the branch is decided.

o Cycle 2: beq (in ID), the control hazard is detected. The sub instruction is
stalled and a nop “bubble” is inserted in the ID stage.

o Cycle 3: beq (in EX) decides the branch, but the hazard continues.

27/10/23 version

beqg x5, x1, L1 IM

|
I RF »—lg
- - @ M ,m QZ}[I D GRLLLEELEEEEEEEEEED The “bubble” advances, leaving the ID stage inactive

sub x6, x2, x4 IM ~|

[~
3
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Control hazards
HW solution: stalling

" One solution consists in stalling the pipeline during 2 cycles to delay
fetching new instructions until the branch is decided.

o Cycle 2: beq (in ID), the control hazard is detected. The sub instruction is
stalled and a nop “bubble” is inserted in the ID stage.

o Cycle 3: beq (in EX) decides the branch, but the hazard continues. The sub
instruction remains stalled and another “bubble” is inserted.

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

s
Ay
§ T 27 3T o 1T 5 1T 6 | 7 T 8 |
1S
: | o -
§ beq x5, x1, Ll . RE } Gorrrreenennrnens The beq /nstrgctlon calculates the destination address
O I and whether it has to branch or not.
&
N S
&:.: .g eulo—3t6—ad—ud @ IM m s GLRLTITLCEITTEEELEY The “bubble” advances, leaving the ID stage inactive
S 0
S Q
€ &
e @ M [
M,

et Same as the previous cycle

Control hazards
HW solution: stalling

" One solution consists in stalling the pipeline during 2 cycles to delay
fetching new instructions until the branch is decided.
o Cycle 2: beq (in ID), the control hazard is detected. The sub instruction is
stalled and a nop “bubble” is inserted in the ID stage.

o Cycle 3: beq (in EX) decides the branch, but the hazard continues. The sub
instruction remains stalled and another “bubble” is inserted.

27/10/23 version

o Cycle 4: beq (in MEM), the appropriate instruction is fetched.

| 1 2 | 3

RF

|
—ee e umm
@ > SALEELEEED The “bubble” advances, leaving the ID stage inactive

sub x6, x2, x4
© IM y GLLLTIITEL The appropriate instruction is fetched
Ll: add x7, x3, x4

S GRLLERLEIIE The “bubble” advances, leaving the EX stage inactive

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Control hazards
HW solution: stalling

" One solution consists in stalling the pipeline during 2 cycles to delay
fetching new instructions until the branch is decided.

o Cycle 2: beq (in ID), the control hazard is detected. The sub instruction is
stalled and a nop “bubble” is inserted in the ID stage.

27/10/23 version

o Cycle 3: beq (in EX) decides the branch, but the hazard continues. The sub
instruction remains stalled and another “bubble” is inserted.

o Cycle 4: beq (in MEM), the appropriate instruction is fetched.
o There is a penalty of two cycles per branch instruction.

[1 2 | 3 | 4 | 5 | 6 | 7 | 8 |

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

RF
i Instructions and “bubbles”

|
—ee2 sroe) 1Y m
@ m ‘:I:glfo‘l q ém continue execution
y |

sub x6, x2, x4 I
o | > |
IM RF - RF
(Ll: add x7, x3, x4) I —|—@ I I

module 7:

Control hazards

HW solution: branch prediction (i)

" There is a better solution for beq instructions, which consists in
predicting that the branch will not be taken.
o The beq instruction and the following ones are fetched as normal.
o When the branch address/decision is known (beq will be in the EX stage):

e [f the branch is not taken, do nothing.

* If the branch is taken, the last 2 fetched instructions are flushed, inserting nop
“bubbles” in the ID and EX stages.

o Inthe next cycle (beqg will be in MEM), the appropriate instruction is fetched.

27/10/23 version

o There is a penalty of two cycles per taken branch instruction. No penalty if
the branch is not taken.

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

" The opposite operation, i.e., to predict that the branch is taken, is much
more complex since this also requires to predict the destination address.

Control hazards

HW solution: branch prediction (ii)

=
9 I+ 2 | 3 | 4 | s | 6 | 7 | 8 |
& beq x5, x1, L1 IM I RF }a) GRRLEEREEEEETEEEEED The begq instruction decides that it does not have to branch
o
=
: I

sub x6, x2, x4 M I RF

or x7, x5, x2 M

e 1 2 f 3 ¥ 4 | s | 6 § 7 | 8 |
b 5 1 11 - I 3 } D S The begq instruction decides that it has to branch to
eq X9, %I, I a given address, the prediction was wrong

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

sub x6, x2, x4 M I RF

module 7:

or x7, x5, x2 IM

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

beg x5, x1, L1

sub x6, x2, x4

or x7, x5, x2

beg x5, x1, L1

Control hazards

HW solution: branch prediction (ii)

1 2 | 3 1 a4 1 5 | 6 | 7 1 8 |
IM RF }9) GLLRREEEEEERLEEEEEE The beq instruction decides that it does not have to branch
M I RF
I _SMmemedmnwmﬁwmﬂwsmLorMﬁmdbm
may continue execution
M
1 2 | 3 | 4 | s | 6 T 7 T 8 1
The begq instruction decides that it has to branch to
IM RF } (-------------------)))
a given address, the prediction was wrong
IM I RF I . .
I x Since the prediction was wrong, the

IM

- sub, or instructions must be flushed: the IF/ID and ID/EX
registers are deleted by inserting “bubbles”

Control hazards

HW solution: branch prediction (ii)

beg x5, x1, L1 IM I

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

sub x6, x2, x4

or x7, x5, x2

and x3, x1, x2

s
Ay
v
S L1 1 s | 6 | 7 [8 |
o
.
3 |
§ beqg x5, x1, L1 I
S |
.. Q
S
T O X-..
o .E- ."0
E Q .'.,

‘.., The “bubbles” advance, leaving the ID and EX
stages inactive

Ll: add x7, x3, x4 S GCCCEEEEEEEEEEEEEEE The branch destination instruction is fetched

Control hazards

HW solution: branch prediction (ii)

beg x5, x1, L1 IM I RF I II
IM I RF 2 I I

27/10/23 version
ALU

sub x6, x2, x4

:___ Instructions
continue execution

2
W
|
ALU
J x
M

or x7, x5, x2 RF

I | |
and x3, x1, x2 IM I RF 2 I RF
L1 1 2] 3 4 | 5 | 6 | 7 | 8 |
beg x5, x1, L1 IM I RF :3:'> II

Instructions and “bubbles”

q : continue execution

S
D
0
s
~
S
0
Q0
S
s
S
B
Q
RS
—
Q
2
Q

module 7:

—A

Ll: add x7, x3, x4 IM

RF

ALU
)
M

Control hazards

HW solution: branch prediction (iii)

" For jal instructions (which always branch), predicting that the branch
is not taken is always wrong, but it is used because:

27/10/23 version

o The penalty is the same as stalling the pipeline.
o No additional logic to the one needed for beq is needed.

o Implicitly, this solves a special kind of data hazard.

* The jal instruction stores PC+4 in x1 during the WB stage, a value that is not
in the ALU and therefore it cannot be forwarded using the designed data path.

* Thanks to the 2-cycle delay, the updated value of x1 can be read from the RF.

e 1 2 | 3 | 4 | s | 6 | 7 | 8 |

I >

IM I RF:IZSI I RF

IM I RF | %EHIMﬂq
| _%O IO

Ll: add x3, x2, M I RF

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

ALU

o

Control hazards

HW solution: branch prediction (iv)

" In the simplified execution diagrams, the flushed instructions are
marked explicitly:

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

(1 1 2 | 3

|

beq x5, x1, L1 |Im I RF :I:g I
e BEBIGE
IS

gttt B2 IM 1
S
§ | I
0
§ I >
S Ll: add x7, x3, x4 IM I RF 3 I I RF
0
(%]
g
.8 1 2 3 4 5 6 7 8
N
2 c
33 beq x5, x1, L1 IF | ID | EX | M | WB
SN
sub x6, x2, x4 |F ID ><
or x7, x5, x2 |F ><
Ll: add x7, x3, x4 IF ID EX M WB

Pipelined processor

+ branch prediction: data path

27/10/23 version

> PC4
>
Instruction

“(CETTTTTIrr- S TETEH FERTRTIRPEF

m

RA1

2
<

memory
w)
|
Register s
file
)
(w)
]

ID/EX

|
S

IF/ID

S
o

P

extension : : :

"-:qudZero
X
>

<
S
0
S
1S
(o]
2
g
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

A delete port is added to flush the
instruction in the IF stage
(by inserting a “bubble” in ID).
This already exists in the ID stage

Pipelined processor

Wrong branch prediction simulation: 3rd. cycle

C
iel
2
(0]
>
(s2)
) : :
g or x7, x5, x2 sub x6, x2, x4 . beqgq x5, x1, L1 .
~ : : : :
IF ., = ID - EX s VMIEM o WB
Coven e > WRONG PREDICTION:
---------- the branch must be taken
IF/ID and ID/EX are deleted
S >
S S S ra1 "E RD1
.E’ a gt A S E D) o 1.
3 - I RA2 2
S 28 |Ix 28 Rp2
. = = WA D=
2 ol ™ x
a] WD
Q | S
o o 4
S
°
Q
S 4 1
E — —
2
Q

N
Q2
S
o
Q
g

Sign
extension °

Pipelined processor

Wrong branch prediction simulation: 4th. cycle

c
.0
w
—_
(]
>
™
AN
~~
(@)
A
~
N~
(qV}

Ll: add, x7, %3, x4 i Q @ i beq x5 ...:

IF . - D . EX © MEM ,

c
Q xof =
g 171 52 °F : =] 5
“ =~ ‘ng WA D® “ @I ¢ 1 < 0 3 g
7 S =
] X WD g
:5. 'g 0 A
N S 0 0
\5}
S S 0 L
T Q
o _s.
S (gnl_ 0
extension ° >
+

Pipelined processor

Wrong branch prediction simulation: 5th. cycle

c
iel

7

—

[}

>
™
N
=~
S
-
-~
N~
N

lw x8, 48(x1) ! Ll: add, x7, x3, x4 ! @ C} i beq ...

IF , - ID - EX - MEM o WB

0
S o jm
S 8 S rar WE epibS —N] 0 z |z EE 2
) O 1 WE =
8 alt1A S & DI 5 _m >3 S w11
A =92 | | RA2 2 4 = i =
< - 2 9 ppok - = A >RD 0
. = 2 wA P& T°° ml { 1 < o g9
Q o WD g
8 b 0 WD
3 B 3 0
N 8 7 0
Q
S £ - - —
S o
S Q
S (gnl_ 0
extension ?

Pipelined processor
Extended hazard unit design (i)

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

®" The hazard unit is extended in order to flush the instructions in the IF
and ID stages if a branch has to be taken:

o The IF/ID and ID/EX pipeline registers are deleted.

" In order to behave correctly, it must know:
o PCsrcE: it is only active if the instruction in the EX stage is a branch and it

[~
2
$ has to be taken.
S
g
o [\
o Stall & if ((ResSrcE = 0) & BRwrE & ((Rs1D = RdE) | (Rs2D = RdE))) then (1)
L E else (0)
T Q
g & StallF < Stall
StallD < Stall
FlushE & Stall | PCsrcE S LR The ID/EX pipeline register is deleted

\F| ushD & PCsrcE S I The IF/ID pipeline register is deleted /

module 7:

27/10/23 version

S
D
0
s
~
S
0
Q0
S
s
S
B
Q
£
—
Q
2
Q

RdE
Rs1D
Rs2D

ResSrcE
BRwrE

PCsrcE

Pipelined processor
Extended hazard unit design (ii)

Stall & if ((ResSrcE = 0) & BRwrE & ((Rs1D = RdE) | (Rs2D = RdE))) then(1)

else (0)
StallF <« Stall
StallD & Stall
FlushE & Stall | PCsrcE
FlushD < PCsrcE Rs1D RdE Rs2D ResSrcE PCsrcE
5 5 5 2 L

L

5/
7/
2f ——> StallF
2f > StallD
2/

~

StallF StallD FlushE FlushD

Pipelined processor

+ branch prediction: control signals

27/10/23 version

> PC4
>
Instruction

“(CETTTTTIrr- S TETEH FERTRTIRPEF

m

RA1

2
<

memory
w)
|
Register s
file
)
(w)
]

ID/EX

|
S

IF/ID

S
o

P

extension : : :

<
S
0
S
1S
(o]
2
g
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

: ! i FlushD —s
R ETrS AT . FlushE:

T S
A de/ete signa/ is added ..

The delete signal already exists

Pipelined processor

+ branch prediction: status signals

27/10/23 version

> PC4
>
Instruction

“(CETTTTTIrr- S TETEH FERTRTIRPEF

m

RA1

2
<

memory
w)
|
Register s
file
)
(w)
]

ID/EX

|
S

IF/ID

S
o

P

extension P :

<
S
0
S
1S
(o]
2
g
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

Pipelined processor
With full hazard management

o[l
J19)s1b6ay

<

1%

Sign
extension
A

aw/di

(a]

Alowaw
uononnsuj

UoIsIBA €2/01/1¢

ubisap 40ssazoud pauijadid

:/ 3|npow

module 7:

27/10/23 version

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

Pipelined processor

SW vs. HW hazard management

Penalty
Hazard Involved (cycles) Implemented
type instructions HW solution
SW HW
Structural (this does not exist) - - -
add/i —like - others 1,2o0r3 0 forwarding
0 [stall + forwarding
1w - add/i —like 1,20r3 1 (avoidable by code reordering)
Data stall + forwarding
1w > 1w 1,20r3 1 (avoidable by code reordering)
stall + forwarding
1w = sw 1,2o0r3 1 (avoidable by optimized
forwarding)
beq 2 Oor2 branch prediction
Control
jal 2 2 branch prediction

Pipelined processor
Cost and cycle time (CMOS 90 nm)

area = 77,018 um?

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

tclk = 10.5 ns < 10.5 s
1 1
_ _ = 95 MHz] ’
fe = ¢ = 10510765 ol MEM :
ID RF
m critical path 7
8,890 ps x ALY %
- ID /2tclk+723 PsS MEM E MEM
S EX 10,541 ps
Q
: MEM 8,667 ps WB frF
: WB 1,122 ps
: S max. 10,541 ps
N3
2 £ . . .
§ 3 " |deal pipelined CPI: without hazard penalty (CPI = 1).
Q
CPI =1
torec =108-1-10.5ns=1.05s

MIPS =108/(10°-1.05s) = 95.2 Minst/s

Pipelined processor

Performance metrics

" Given a program that executes 108 instructions (100 million) so that:

o 25% of the instructions are 1w
* 40% are followed by an instruction that needs the loaded value: 1-cycle stall.

o 10% of the instruction are sw

o 11% of the instructions are beq
* 50% are taken branches: wrong prediction and 2 instructions are flushed.

o 2% of the instructions are jal
o 52% of the instructions are arithmetic-logic

" Actual pipelined CPI: with hazard penalty (CPI > 1).
o 1w: 1/2 cycles, beq: 1/3 cycles, jal: 3 cycles, other: 1 cycle

27/10/23 version

[~
3
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

CPI = (0.25 . (06 1404 - 2) D YT T 1w instructions
E +010-1 Grevrrrrrnnmnnanns sw instructions
~§ + 011 . (05 . 1 + 05 . 3) Grormrrnnnnnnnnnnas begq instructions
+ 0.02 -3 O ST T jal instructions
+052-1=1.25 > {LLITTTTTITTITTrrs Arithmetic-logic instructions
toroe =108-1.25-105ns=1.31s

MIPS =108/(10°-1.43s) = 76.2 Minst/s

Comparison

Reduced RISC-V: single-cycle vs. multicycle vs. pipelined

" The pipelined processor is more expensive, but it has better performance

I) T

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

Single-cycle 27.6 59,181 2.76
Multicycle 9.8 4.14 65,626 4.06 1.12 0.68
Pipelined 10.5 1.25 77,018 1.31 1.30 2.11
'% I MEM §ﬂ ALU MEM HEL A 1w instruction executed in each processor
Ml < >
S| I 27.6 ns . .
B v g Aau P AW 1 MEM /B
o ——— i o = a
3 g < 3 ns 5 cycles >i
Sl 49 ns . | -
[vew] %R, BEY 2
' > i a =
i 10.5 ns 5 cycles
i<

Advanced microarchitectures

Superscalar processors

" A superscalar processor contains several copies of the data path:
o It executes in parallel several instructions of the same program/thread.

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

o A superscalar processor with 2 ways:
* Has 2 ALUs, and the RF and the memory have duplicated ports.
* Fetches 2 instructions per cycle (ideal CPI =).

L1 |1 2 | 3 J 4 | 5 | 6 | 7 |
- lw s7, 40(s0) %
D IM RF DM RF
3 add s8, t1, t2 Q
S g
a
]
S N
Q
R 8 sub s9, sl, s3 ?}
L E IM RF DM RF
‘8 E and sl0, s3, t4 %
g I/

o The data/control hazard probability increases:

* To reduce it, it executes instructions in an order different from the one in which
they are written in the program (out of order), making sure the result is correct

Advanced microarchitectures

Multicore processors

" A multicore processor contains several copies of the full processor:
o It executes in parallel several instructions of different programs/threads.

27/10/23 version

o A dual core processor:
* Has 2 full pipelined processors that share the memory.
* Fetches 2 instructions per cycle (ideal CPI =).

L1 § 2 7 3 J 4 J 5 | 6 | 7 |
1w x5, 40(x1) |Im I RF 3 I DMI RF

corel

AIRF

ALU

sub x6, x2, x3 M I RF

RF

DM II RF

lw x5, 40(x1) M I

)
T
ALU

[~
S
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:
core 2

sub x6, x2, x3 IM I RF

ALU

o Each core may also be a superscalar:

* A dual core superscalar with 2 ways, fetches 4 instructions per cycle (ideal CPI =).

Advanced microarchitectures

Intel processors

Out of
Mi Y # St #HW

C
.0
n
—
()
>
™
N
~~
o
—
~
N~
AN

1989 1 1

Pentium 1993 66 2 No 1

Pentium Pro 1997 200 10 3 Yes 1

Pentium 4 Willamette 2001 2000 22 3 Yes 1

Pentium 4 Prescott 2004 3600 31 3 Yes 1

§ Core 2006 3600 14 4 Yes 2
§ Core i7 Nehalem 2008 3600 14 4 Yes 2-4

§ Core Westmere 2010 3730 14 4 Yes 6

N % Core i7 lvy Bridge 2012 3400 14 4 Yes 6
é § Core Broadwell 2014 3700 14 4 Yes 10
Core i9 Skylake 2016 3100 14 4 Yes 14

Ice Lake 2018 4200 14 4 Yes 16

source: A.A. Patterson & J.L. Hennessy, Computer Organization and Design, RISC-V Edition (2nd. edition). (2021)

27/10/23 version

e Cost calculation.
e Cycle time calculation. PATTTLN

Technology

<
=
&
s
N
()
0
&
S
s
Q
S
)
£
—
Q
2
<

module 7:

Cost and cycle time calculation
90 nm CMOS

§ $2 ‘1’ ‘1’ " ‘1’ ‘1’ $32 $2
N < FA [€— - € FA [&—
. Y v v V/ area: 3,052 um?
ALU .
~ area: 32x29.49 = 944 ym? delay: 8,360 ps
delay: 32x226 = 7,232 ps $Z 5
32 32 ! ! $2

Sign area: 202 pm?
extension delay: 460 ps

2

area: 32x11.05 = 354 um?
delay: 223 ps

P

[~
3
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

§ ------ — RA1 . area: 51,405 pm?
S T2 i RA2 @ o ppp| readdelay: 723 ps
WA &% write setup: 705 ps
32 area: 32x23.04 = 737 ”mz WD « (due to the DEC Iafi)ddress) P
delay: 250 ps A

90 nm CMOS cell library, source: Synopsys (SAED EDK 90 nm)

module 7:

27/10/23 version

[~
3
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

\©Y

Cost and cycle time calculation
CMOS 90 nm

Idealized behavior: delay comparable to the one of the ALU
(so that it can be read in one clock cycle)

area. —

memory
=]

>
Instruction

access time: 8,500 ps

$2

p PC Id p S I

cl n
v
area: 32x11.05 + 32x32.26 = 1386 um?

CLK—Q delay: 167 ps
setup: 1x223 = 223 PS (due to the load MUX)

WD

a,
L
L]
L4
L]
L
L]
L4
L]
“
-
]
L]
«
L]
-
g
.
a,
,

a,
L]
L]
L]
“
L
v,
“,

access time: 8,500 ps

area: 56 pm? area: 65 um?
delay: 490 ps delay: 451 ps
area: 21 pm? j — area: 15 um?
delay: 451 ps delay: 351 ps

90 nm CMOS cell library, source: Synopsys (SAED EDK 90 nm)

Cost and cycle time calculation

CMOS 90 nm
% $6 $85
N g IF/ID < Lo ID/EX
$6 $85
area: 96x11.05 + 96x32.26 = 4,158 um? area: 185x32.26 = 5,968 um?
CLK—Q delay: 167 ps CLK—Q delay: 1x167 = 167 ps
setup: 1x223 = 223 pPS (due to the load MUX) setup: 0 ps
$05 $04
S
3 EX/MEM < MEM/WB
S $05 $04
2
0
S area: 105x24.88 = 2,612 pm? area: 104x24.88 = 2,588 um?
% §' CLK—Q delay: 167 ps CLK—Q delay: 167 ps
§ % setup: 0 ps setup: 0 ps
o Q
SN

area : 418 um?
delay: 744 ps

Forwarding
unit

area: 195 um? _!D_ area: 7 um?
delay: 881 ps — delay: 171 ps

Cost calculation

27/10/23 version

> PC<
>
Instruction

Connennnnnines

RN
w
o
(@]

m

RA1

ID/EX

P,
<
Register <
file
Y
g
N

|
S

IF/ID

S
o

o 354

extension

1 [202

<
D
0
<
~
(°]
a
g
s
S
S
)
£
—
)
2
g

module 7:

77,018 pm?

202

Cycle time calculation

IF stage: critical path

27/10/23 version

“(CETTTTTIrr- S TETEH FERTRTIRPEF

m

RA1

2
<

Register s
file
)
=]
N
ID/EX

|
S

IFIID

S
o

P

extension R :

>fclr

<
D
0
<
~
(°]
a
g
s
S
S
)
=
—
)
2
g

module 7:

Cycle time calculation

ID stage: critical path

27/10/23 version

ID/EX

|

s 3

> R
Register

memory
o
|

>
Instruction

RD2}-

IF/ID

>d PCY

S
o

extension R :

>fclr

<
D
0
<
~
(°]
a
g
s
S
S
)
=
—
)
2
g

module 7:

Vot + 723 ps

Cycle time calculation

EX stage: critical path 351

27/10/23 version

[223 ||

<
(03]
w
o
M

m
EX

<
MEM/V

RA1

RD1F T - 250

ID/EX

2
<

memory
o
|

>0 PC<

>
Instruction
|
3

223

IF/ID

Register s
file
)
(w)
N
>
Data
memory M
X
(w)
L}
O

S
o

& o 223

extension i :

>fclr

[~
S
0
S
1S
(o]
2
g
L.
Q
o
(V)
S
—
Q
2
Q

module 7:

unit

Cycle time calculation

MEM stage: critical path

27/10/23 version

> PC<
>
Instruction

e el

m

RA1

2
<

memory
w)
|
Register s
file
)
(w)
]

ID/EX

|
S

IF/ID

S
o

P

extension R :

>fclr

<
D
0
<
~
(°]
a
g
s
S
S
)
=
—
)
2
g

module 7:

module 7:

27/10/23 version

>q PC<
>
Instruction

<
S
0
S
1S
(o]
2
g
L.
Q
o
(V)
£
—
Q
2
Q

Cycle time calculation

WB stage: critical path

“CETTTTTIrr- S TETEH [ERTRTRPEF

m

2

memory
O
|
N
S
N
o

IF/ID
.@(. srnnaflaina@enncadionnfuaentannafennt
|
S
>
Register s
file
X
(=]
N

ID/EX

g

11:7 & 705

extension R :

>fclr

1,122 ps < Yt

About Creative Commons

" CC license (Creative Commons) (OO

o This license enables reusers to distribute, remix, adapt, and build
upon the material in any medium or format for noncommercial
purposes only, and only so long as attribution is given to the creator.
If you remix, adapt, or build upon the material, you must license the
modified material under identical terms:

27/10/23 version

Attribution:
Credit must be given to the creator.

Non commercial:
Only noncommercial uses of the work are permitted.

Share alike:
Adaptations must be shared under the same terms.

[~
3
0
S
1S
(o]
(7))
0
S
L.
Q
o
(V)
£
—
Q
2
Q

module 7:

More information: https://creativecommons.org/licenses/by-nc-sa/4.0/

