

Ejercicio 1 (3 puntos) Sea un computador con un procesador ARMv4. EL procesador cuenta con una memoria cache de emplazamiento directo de 512 bytes con bloques de 64 bytes, unificada para datos e instrucciones (se almacenan en la misma cache los bloques de instrucciones accedidos en la etapa FETCH y los bloques de datos accedidos en la ejecución de las instrucciones Idr y str).
a) (0.5 puntos) En dicho sistema se quiere ejecutar el siguiente programa. Explique razonadamente lo que hace el código (debe darse un pseudo-código tipo C/C++ equivalente).

```
.equ N, 32
.data
A: .word N valores enteros separados
por comas
B: .word N valores enteros separados
por comas
```

.bss
C: .space $\boldsymbol{N}^{*} \mathbf{4}$
.text
start: $\quad \operatorname{ldr} \mathrm{rO},=\mathrm{A}$
Idr r1, =B
Idr r2, =C
mov r4, \#N
L1: Idr r5, [r0]
Idr r6, [r1]
add r5, r5, r6
mov r5, r5, Isl \#2
str r5, [r2]
add r0, r0, \#4
add r1, r1, \#4
add r2, r2, \#4
sub r4, \#1
cmp r4, \#0
b) (0.25 puntos) Con direcciones de 32 bits, indicar el formato de la dirección para MP y para la MC.
c) (0.5 puntos) El programa se enlaza ubicando la sección .data a partir de la dirección $0 \times 0 \mathrm{C} 000000$, con la sección .bss colocada justo después de la sección .data y la sección .text a continuación de la sección .bss. Obtenga los rangos de direcciones que ocupan el array A, el array B, el array C y las instrucciones, indicando para cada rango el/los bloques de memoria correspondientes, y el marco de bloque (bloque de cache) y la etiqueta asociados.
d) (1 punto) Determine el número de aciertos y fallos de cache que se producirían al ejecutar el código anterior, hasta la primera vez que se ejecuta la instrucción que está en la etiqueta end.
e) (0.75 puntos) Suponga que el programador cambia el valor N por 16. Obtenga de nuevo los bloques de memoria en que se ubicarían los datos y las instrucciones. Explique
razonadamente cómo afectaría este cambio a los fallos de cache y a la tasa de fallos (cociente entre fallos y accesos totales)

Ejercicio 2 (2.5 puntos) Se desea añadir al procesador multiciclo la instrucción BEQAL Rs, Rt, Offset con código de operación 000001, cuyo comportamiento es:

Si $\mathrm{Rs}=\mathrm{Rt}$

$$
\begin{aligned}
& \text { R31 <- PC + 4; } \\
& \text { PC <- PC + } 4+4 \text { Offset; }
\end{aligned}
$$

Si no

$$
P C<-P C+4
$$

Se pide:
a) (1 punto) Indica todos los cambios que tendrían que realizarse a la ruta de datos para poder ejecutar esta instrucción.
b) (0.75 punto) Describir los cambios necesarios en el diagrama de transición de estados del controlador para poder ejecutar correctamente esta instrucción.
c) (0.75 punto) Indicar los cambios necesarios en las tablas de verdad del controlador.

Ejercicio 3 (3 puntos) Un vector V de N números naturales es noeliano si es una secuencia monótona creciente y sus elementos suman en total 45 . Por ejemplo: 0-1-2-3-4-5-6-7-8-9 es noeliano porque $0 \leq 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7 \leq 8 \leq 9$ y $1+2+3+4+5+6+7+8+9=45$. También: 3-5-5-7-1015 es noeliano, ya que $3 \leq 5 \leq 5 \leq 7 \leq 10 \leq 15$ y $3+5+5+7+10+15=45$. Se pide:
a) (1.5 puntos) Escribir una subrutina en ensamblador de ARM Sum45(A, N) que reciba la dirección de comienzo de un vector A como primer parámetro, el número N de elementos del vector como segundo parámetro y devuelva 1 si su suma es 45 y 0 en otro caso. La subrutina debe programarse de acuerdo con el estándar de llamadas a subrutinas que hemos estudiado en clase.
b) (1.5 puntos) Escribir un programa ARM que, utilizando la subrutina anterior, determine si un vector de entrada es noeliano o no.

Ejercicio 4 (1.5 puntos) Un mismo programa se ejecuta en dos computadores A y B que tienen frecuencias de reloj de 1 GHz y 1.5 GHz , respectivamente. Para ejecutar el programa en A es necesario ejecutar un cierto número de instrucciones repartidas de la siguiente manera:

	Aritmética	Load	Store	Salto tomado	Salto no tomado
Frecuencia	50%	25%	10%	10%	5%
Ciclos	4	5	4	4	3

a) (0.5 puntos) Calcula el CPI del programa en el computador A .
b) (1 punto) En el computador B el número de instrucciones ejecutadas es el 60% de las ejecutadas en A y el tiempo de ejecución es la mitad que en A. ¿Cuál es el CPI obtenido en la ejecución del programa en el computador B?

