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Resumen en castellano

En los últimos años ha ocurrido un resurgimiento de la carrera espacial moti-
vado especialmente por empresas comerciales. Sus aeronaves son equipadas con una
multitud de sensores, siendo uno de ellos las cámaras hiperespectrales. Este tipo de
cámaras toma imágenes en cientos de bandas espectrales diferentes, con el objetivo
de proporcionar información sobre el terreno.
A causa del gran tamaño de las imágenes hiperespectrales, estas son enviadas a la
Tierra para su procesado, con el consecuente coste de transmisión y almacenamiento.
Preferentemente estas imágenes deberían procesarse o comprimirse in situ para enviar
solo una fracción de los datos obtenidos. Dados el entorno espacial y las característi-
cas este tipo de algoritmos, las FPGAs o ASICs se postulan como un sistema óptimo
para su implementación.
Este trabajo presenta una implementación sobre FPGAs del algoritmo Reed-Xiaoli
de detección de anomalías para imágenes hiperespectrales. Para su implementación
se ha realizado un análisis de las operaciones del algoritmo, centrada en una versión
en punto �otante y otra en aritmética de enteros, y de las repercusiones que tienen
ciertas decisiones con la precisión que se alcanza. Demostrando de esta manera
cómo algoritmos complejos con operaciones en punto �otante pueden ser ejecutados
en FPGAs al transformarlos para utilizar aritmética de enteros.

Palabras clave

Imágenes hiperespectrales, Algoritmo RX, Aritmética de punto �otante, Arit-
mética de enteros, Hardware recon�gurable, VHDL.



Abstract

In recent years there has been a resurgence in the space race, motivated especially by
commercial companies. Their aircrafts are equipped with a multitude of sensors, one
of them being hyperspectral cameras. This type of camera takes images in hundreds
of di�erent spectral bands, with the aim of providing information of the ground.
Because of the large size of hyperspectral images, they are sent to ground stations for
processing, with the consequent cost of transmission and storage. Preferably these
images should be processed or compressed on site and only a fraction of the data
obtained should be sent. Given the spatial environment and the characteristics of
these types of algorithms, FPGAs or ASICs are postulated as an optimal system for
their implementation.
This work presents an FPGA implementation of the Reed-Xiaoli algorithm of anomaly
detection for hyperspectral images. For its implementation, an analysis of the opera-
tions of the algorithm has been made, centered in a �oating point version and another
one in integer arithmetic, and of the repercussions that certain decisions have with
the precision that is reached. Thus, demonstrating how complex algorithms with
�oating point operations can be executed in FPGAs by transforming them to use
integer arithmetic.

Keywords

Hyperspectral images, RX algorithm, �oating point arithmetic, integer arith-
metic, recon�gurable hardware, VHDL
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Chapter 1

Introduction

1.1 Motivation and objectives

Space exploration serves many purposes, the most obvious being gathering informa-
tion about our planet and its surroundings. For this purpose, sensors capable of
gathering information are created, such as antennas or telescopes that are used both
from the Earth and sent aboard spaceships. One of those are hyperspectral cameras,
which take pictures in hundreds of di�erent bands. Their data allows to �nd objects,
detect materials or identify processes. As technology advances, these sensors evolve
requiring appropriate processing solutions to interpret the data or compress it and
send it to ground.

The objective of this work is the implementation of one of these algorithms in a
way that the processing in the aircraft is preferable to the transmission of the raw
data.
For this purpose, di�erent algorithms will be evaluated and one will be chosen, more
speci�cally, the Reed Xiaoli algorithm. A �rst implementation of the �oating point
algorithm will be done and its transformation to integer arithmetic will be studied.
This step is necessary because the major impediment of these algorithms to be im-
plemented in hardware is the high number and complexity of its operations. With
the arithmetic well de�ned, its implementation will be adapted and a comparison of
accuracy and performance between the �rst �oating point version and the integer
version will be made.
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1.2 Related work

In this section we will review the state of the art on the use of FPGAs (�eld pro-
grammable gate arrays) in space applications in general and implementations related
to the algorithm developed in this work.

In [15] a study is carried out on the current situation of the use of FPGA on board
aircraft for hyperspectral analysis and implementations of two algorithms, ISRA and
N-FINDR, are presented. The results show numerous advantages of FPGA over
other types of solutions such as GPUs, such as its smaller size and weight and its
resistance to radiation. In addition, their recon�guration capabilities even after the
system is launched are emphasized.

In [11] an implementation of a target generation algorithm is presented. It uses
an inverter based on the Gauss Jordan elimination method, same as the one that
will be used in this work, and the results are presented on the same platform.

In [9] a study of the same algorithm that will be implemented in this work is car-
ried out on an FPGA. The results are positive with a reduction in calculation time
compared to software-based solutions. However, this study was performed only on
a �oating point implementation which limited it to the processing of previously di-
mensionally reduced hyperspectral images.

In [21] the processing of data on board is proposed with the aim of reducing network
usage and accelerating data processing. One of the steps of this processing is also
the RX algorithm that will be implemented here.

In general, the previous works present good results on these systems and expec-
tations to an increase of use, motivated by more and more advanced image capture
systems that take the hardware to their limits.
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1.2.1 Recon�gurable hardware

FPGAs are chips based on an array of con�gurable blocks called CLBs interconnected
by an also con�gurable network (see Figure 1.1).

Figure 1.1: Generic FPGA hardware architecture. Depicted is the basic structure
of a CLB and the interconnecting network.
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Unlike general purpose systems such as CPUs or GPUs, this architecture allows
the design of algorithms with arbitrary calculation widths, resulting in very good
performance when processing images, both in power and time (see Figure 1.2).

Figure 1.2: In image analysis kernels such as lookuptable, histogram, and histogram
equalization, the energy/frame consumption of the FPGA achieves an average reduc-
tion of 1.2Ö compared to the GPU. For kernels with more branching conditions and
complex memory access patterns, such as integral image, mean/std, and min/max
locations, the FPGA's implementation achieved an average reduction ratio of 3.5Ö
compared to the GPU[18]
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The space environment not only limits avaiable power, it also presents a chal-
lenge in the form of ionizing radiation. As this is one of the target markets for
FPGA manufacturers, there are numerous chips with the necessary radiation resis-
tance certi�cations.
ASICs provide the same design �exibility as FPGAs but their manufacturing rigidity
allows them to achieve better performance by only including the speci�c design logic.
However, their cost in small to medium scale projects is prohibitive. In addition, the
�exibility of FPGAs allows recon�guration already in the ship, allowing the use of
di�erent algorithms or bug �xes.

In addition, since most algorithms share certain basic operations such as storage or
high-precision arithmetic operations, FPGA manufacturers include certain prefabri-
cated blocks in the circuit, which although remove some �exibility, provide better
performance than the same logic in CLBs. These blocks are mainly RAM blocks and
DSPs that allow a variety of operations, including multiplication or accumulation.
This heterogeneous architecture (see Figure 1.3) allows the implementation of high-
performance algorithms where it would be impossible using only logic and brings
FPGAs a little closer to the scope of ASICs [22].

Figure 1.3: Heterogeneous FPGA, depicting general con�gurable resources, DSPs,
BRAMs and soft (implemented in logic) and hard (prefabricated) CPUs
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1.2.2 Hyperspectral imagery

A standard camera captures images composed of 3 distinct light bands, which we hu-
mans perceive as red, green and blue. Their spectra correspond to high wavelengths
between 564 and 580nm for red, mediums between 534 and 545nm for green and
short ones between 420 and 440nm for blue. The rest of the spectra are invisible to
our eyes.
However, hyperspectral cameras capture information in many more spectra, both
between the visible bands and outside them, allowing a much wider spectrum to be
analyzed. These bands are usually shown as a third dimension, giving the name of
hypercube to these images (see Figure 1.4).

Figure 1.4: Comparison between the three bands of a standard camera and the
multiple bands of an hyperspectral camera

These spectra or bands form together a hyperspectral signature for each material,
which when compared with aerial images allow the recognition of di�erent types of
vegetation, mineral deposits or contaminants on the Earth's crust (see Figure 1.5).
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Figure 1.5: The map shown is a mineral map from an AVIRIS scene �own over
Cuprite, Nevada, in 1995 [1]. It shows the mapping of many di�erent minerals

7



In this type of images, we can talk about two types of resolutions: spatial and
spectral, the latter being unique in this type of cameras. Spatial refers to the number
of meters covered by each pixel, so for the same camera you can change from one
image to another. The spectral resolution refers to the separation between di�erent
wavelengths measured in a given range, that is, the more bands captured in a lower
range, the higher the spectral resolution will be [5].

As technology advances, these resolutions continue to increase highlighting the
need for commensurate processing systems.

1.2.3 Anomaly detection

In theory, a material should always have the same spectral signature. In practice,
the captured signature will never be the same as the one measured in a laboratory
because of di�erences in lighting, atmospheric e�ects, noise, etc. resulting in spectral
variation for similar materials [7].

This has led to the development of algorithms that instead of classifying obser-
vations according to their signature, seek to classify the observations into unusual or
anomalous materials and background. This assumes that the material -the target- is
spectrally distinguishable from the background. The background is derived globally
from the image assuming that it follows a normal distribution.

RX algorithm

The Reed-Xiaoli anomaly detector algorithm is a common algorithm that serves as
the basis for many others.

The algorithm is de�ned by the following expression [17]:

δRX(x) = (x− µ)TK−1(x− µ)

Where x is a hyperspectral pixel, a vector of size equal to the number of bands, µ
is the mean of each band and K is the covariance matrix. It is important to say that
the results generated by the algorithm are grayscale 2D images. The anomalies have
a high value, so the �rst anomaly corresponds to the pixel with the highest value,
and so on.
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Other methods

Apart from the RX algorithm, there are other methods for detecting anomalies,
although a notable number of them are based on RX.

Subspace methods

Subspace methods are global and apply principal component analysis (PCA) or sin-
gular value decomposition (SVD) to the hypercube. The �rst PCA/SVD bands are
supposed to be the background and are removed di�erently by each method. Not re-
moving enough bands means that the anomalies can be lost in the background noise
and removing too many would lead the anomalies to disappear. The determination
of the correct number of bands to be removed is still under study [6].

Subspace RX In this method, the RX algorithm is applied to a limited number
of PCA bands. The �rst components are discarded.

RX after orthogonal subspace projection [16] In this method, the �rst PCA/SVD
components de�ne the subspace of the background and the data is projected onto
an orthogonal space before applying XR.

RX after partialling out the clutter subspace [14] In this method, clutter
e�ect on a pixel is discarded component wise taking each of its spectral components
as a linear combination of its high variance principal components. The RX algorithm
is applied to the results.

Complimentary subspace detector [8] This algorithm is not based on RX. In
CSD, the principal components with higher variance are used to de�ne the subspace
of the background and the other PCs to de�ne the subspace of the target. The pixel
is then projected onto the two subspaces and the result is the di�erence between
them.

Local methods

In the local methods the background is derived from the neighboring pixels or sur-
roundings of the pixel under test (PUT). Two windows are de�ned, a guard and an
exterior, and the neighbors are the pixels that are between these two. Sometimes,
for example in local RX, a third one is used where the covariance of the background
is calculated in a window larger than the average of the background (see Figure 1.6).
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Quasi-local RX [12] Quasi-local RX is a compromise between global RX and local
RX, where the global covariance matrix is decomposed using eigenvector/eigenvalues.
The eigenvectors are maintained, but the eigenvalues are replaced by the maximum
local variance, resulting in lower detector scores in areas with high variance.

Covariance window
Mean window
Guard window

PUT

Figure 1.6: Sliding triple window used in the local AD methods.

Segmentation based methods

In complex scenes it is di�cult to assume that the background will be de�ned by
a normal distribution, so methods have been developed to separate it into di�erent
classes.

Class-Conditional RX [13] In this method the image is �rst segmented and the
covariance and mean matrix calculated for each of these classes. Each pixel will
correspond to the class in which its RX value is lower.

There are more methods within those based on segmentation, from those using
stochastic functions such as Method Based on Multivariate Normal Mixture Models
to methods based on Self-organizing maps.

10



1.2.4 Comparing �oating and �xed point

In computer systems, there are two numerical representations for real numbers, �xed
and �oating point. They have di�erent arithmetic, which gives them di�erent range
and resolution with the same number of bits. Therefore, there are certain applica-
tions or platforms more akin to one of them. For example, the ability of �oating
point numbers to contain in the same number of bits both very large and very small
numbers and to adjust their resolution accordingly is very attractive from the pro-
grammer's point of view but the simplicity of �xed point operations allow their use
in small microcontrollers or to save resources in FPGAs (see Figure 1.7).

Figure 1.7: A FIR �lter, originaly implemented as a single-precision �oating-point
�lter and converted to �xed-point. The �xed-point design shows both resource reduc-
tion and latency improvements

Due to the high complexity of hyperspectral image analysis, current FPGAs have
little capacity to implement some of these algorithms. Therefore, one of the objec-
tives of this work is to perform two parallel implementations, one in �oating point
and another one in �xed point and compare their results.

11



1.3 Project plan

First, an algorithm and a hardware platform are chosen. Desirably, this algorithm
should be known and commonly found in the literature.
This algorithm will be implemented in software and this implementation tested with
real images against existing software such as ENVI or Spectral Python.
The di�erent algorithm stages will then be optimized for a hardware architecture
and the transformation of the algorithm from �oating point to integer or �xed point
logic will be studied.
This transformation requires design decisions that sacri�ce precision with the goal
of saving hardware resources, so the underlying hardware will have to be considered.
Subsequently, a hardware validation of the design will be realized.
Finally, a study will be carried out on the accuracy of the results obtained.

Tasks 1 2 3 4 5 6 7 8 9 10

1 Research algorithms

2 Software impl.

3 Model hardware

4 Hardware impl.

5 Test and validation

6 Report results

Figure 1.8: Gantt diagram with an overview of months and tasks
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Chapter 2

Software Model

The RX algorithm has been chosen for this work because it is the benchmark for
this kind of algorithms [6], [19], [16] and many existing algorithms basing on RX in
some manner.
In order to become familiar with the algorithm and create a platform where tests
can be easily performed, a software implementation has been made as a �rst step.
The �rst step is to divide the algorithm into simpler operations:

� Calculate the mean, deviation and K covariance matrix of the image

� Calculate K−1 that is, the inverse of the covariance matrix

� Calculate δRX for each pixel in the image

� Sort the results

13



2.0.1 Mean, deviation and covariancce matrix

One of the bottlenecks in this type of FPGA-based systems is the input and output
of data [20]. Since the calculations of mean, variance and covariance matrix need the
original matrix -a cube- for this, it has been decided to calculate these in a CPU and
transmit the results to the FPGA. In addition, the operations are relatively simple
for a CPU. Next, the pseudocode of the three is presented.

Algorithm 1 Pseudocode for the mean, deviation and covariance matrix
1: . bands : number of bands in the image
2: . pixels : number of pixels in the image
3: . A : the image in the form of a 2D matrix with pixels× bands
4: . T is used to denote the transpose of a matrix

5: function mean(A)
6: for i← 0 to bands− 1 do
7: sum← 0
8: for j ← 0 to pixels− 1 do
9: sum← sum+ A[i][j]

10: mean[i]← sum/pixels
return mean

11: function deviation(A,mean)
return AT −mean . This operation is a matrix subtraction

12: function covariance(deviation)
return deviationT ∗ deviation/(pixels− 1)

The covariance, a band2 matrix is then transmitted to the FPGA to calculate its
inverse.

14



2.0.2 Inverse

Choosing the algorithm

Before starting the implementation, several algorithms to perform the inverse have
been studied.

QR Factorization [4]: QR factorization breaks down the A matrix into the prod-
uct of two matrices A = QR, with Q being an orthogonal matrix and R a superior
triangular matrix. With this triangular matrix it becomes easy to calculate the in-
verse. However, although QR factorization can be e�ciently performed on a powerful
matrix multiplication module or several modules that can be executed simultane-
ously, such as in a GPU, it does not take advantage of the capabilities provided by
our system such as arbitrary width arithmetic units.

Gauss Jordan elimination method [11]: The Gauss Jordan method dictates
that if we have a A matrix that can be transformed into the identity matrix through
elementary operations, these same operations transform the identity matrix into A−1.
Since it is possible to execute these elementary operations in an entire row at once
and the operations between rows are independent, this method is easily paralleliz-
able. Therefore, this was the chosen method.

Generally speaking, the execution of the algorithm takes place in such a way that:

1. An identity matrix is generated

2. The same operations are performed on both matrices until the A matrix is
transformed into the identity matrix

3. The result is in the matrix generated in the �rst step

As seen in the following pseudocode, these elementary operations are performed in
3 steps:

15



Algorithm 2 Pseudocode of the Gauss Jordan method
1: A : a square matrix with the size n ∗ n
2: A−1 : an identity matrix with the size n ∗ n

3: function inverse(A)
4: for i← 0 to n− 1 do . Forward elimination to build the upper triangular

matrix
5: . row i acts as the pivot
6: if A[i][i] = 0 then . If the later divisor is 0
7: for j ← i+ 1 to n− 1 do
8: if A[i][j] 6= 0 then
9: A[i]← A[j], A[j]← A[i]

10: for j ← 0 to n− 1 do
11: A−1[j]← A−1[j]− A−1[i] ∗ (A[j][i]/A[i][i])
12: A[j]← A[j]− A[i] ∗ (A[j][i]/A[i][i]) . These two lines run in parallel

13: . After a complete iteration of the outer loop, the pivot contains the
desired form

14:

15:

16: for i← n− 1 to 0 do . Backward elimination to build a diagonal matrix
17: for j ← i− 1 to 0 do
18: A−1[j]← A−1[j]− A−1[i] ∗ (A[j][i]/A[i][i])
19: A[j]← A[j]− A[i] ∗ (A[j][i]/A[i][i]) . These two lines run in parallel

20:

21:

22: for i← 0 to n− 1 do . Last division to build identity matrix
23: A−1[i]← A−1[i] ∗ (1/A[i][i])
24: A[i]← A[i] ∗ (1/A[i][i])
25: . There is no need to update the values in the starting matrix

return A−1

16



2.0.3 Matrix multiplication

With the inverse of the convariance matrix calculated in the FPGA, the real RX
algorithm can continue to be performed, where a hyperspectral pixel is multiplied
with this inverse. This calculation will require the CPU to transmit the original
image, the original image next to the average, or the deviation already calculated to
the FPGA.
The RX algorithm dictates that:

rx(x) = (x− µ)TK−1
N×N(x− µ)

K−1
N×N being the inverse matrix with a dimension of N ×N ,

(x− µ) being the deviation of a pixel a dimension of N × 1 and
(x− µ)T it's transpose, with a dimension of 1×N .

In this step, the inverse matrix gets e�ectively multiplied by a unique pixel across all
bands. Through row reduction, a single value for this pixel is recovered which can
then be mapped to a 2d image.

Since the operands are heterogeneous, use can be made of the associative law on
matrix products that dictates that:

A ∗ (B ∗ C) = (A ∗B) ∗ C

to optimize the operation.

In the implementation section, a study on what alternative to use will be carried
out, as this depends heavily on the hardware architecture.

2.1 Adapting the arithmetic

As shown before in Figure 1.7, �oating point arithmetic operations are very ine�cient
compared to �xed point operations. In the next chapter a transformation strategy
will be de�ned and the steps followed to make this transition will be shown.

Taking advantage that the RX algorithm only needs relative and not exact values, ie,
the highest value found in the results will be the most anomalous (see 1.2.3) regard-
less of whether it exceeds a certain threshold or not, the �xed-point representation
may be simpli�ed by ignoring the fractional part and keeping only the integer.
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2.1.1 DSP Blocks

The DSP blocks are prefabricated circuits found next to the FPGA logic and im-
plement arithmetic operations. These blocks allow to perform operations more e�-
ciently and operate at higher frequencies than equivalent logic in the fabric, besides
not occupying space in it. However, as they are prefabricated blocks, they do not
o�er the same �exibility as the rest of the FPGA logic. This implies that the size of
the operands and the cost of operation resources will not always be proportionally
related. Therefore, di�erent widths have been tested and their resource usage has
been noted.

The results of these tests for multiplication are in the following table:

Width operand A Width operand B DSP48 Slices used

25 18 1
35 25 2
52 24 3
42 35 4
64 25 4
52 42 6

Table 2.1: Depending on the width of the operands, the operation will use a di�erent
amount of resources (data obtained for signed multiplication in Vivado 2019.2 on
Xilinx Series 7 chips)

For subtraction operations up to 48bits, only one DSP is used, so they are not ex-
pected to require more than one block.
The divisions cannot be implemented by this type of blocks, so they will use standard
logic and can be used with an arbitrary width.

With this, data for all the operations that are going to be carried out in the FPGA
is recorded.
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2.1.2 Determining multiplier size

The operand dimensions for the multiplier still must be determined. For this, the
�rst operation for the inverse was done with all possible shift values, with all previous
operations unshifted and all later operations implemented in �oating point.

Figure 2.1: Ratio of anomalies found in the �rst x using di�erent bit widths for the
multiplication. A red line represents the results for a value of 20. Dataset: HYDICE

The results depict the ratio of anomalies found till that point in x. The line for 20
is depicted red since this was the chosen value, since it provides the highest detection
for the �rst anomalies, those being the highest result numbers, without producing an
over�ow. The value of the multiplier operands should also approximate 64−20 = 44
for an operand. The widths representing 42 and 35 were then chosen as a starting
point as they are the cheapest ones resource swise that full�ll this requirement.
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2.1.3 Improving accuracy

It is also necessary to create rules to shift the results to maintain the highest possible
accuracy without producing over�ow.
For example, the divisions made in the inverse calculation produce very small num-
bers where the fractional part is relevant to the �nal result. Since this part is lost in
integer arithmetic, it is necessary to multiply the operands to produce results where
the point is shifted to the left. These multiplications will always be done in powers
of 2, negative if required to decrease the bit width, as they are trivial to implement
in an FPGA and do not require resources.

The results indicated that the greatest loss of accuracy occurred in the inverse cal-
culation. Therefore, the model was revised and shifts were included in the initial
matrix capture, in the initialization in the case of A−1 and in the transfer to the
FPGA in the case of A. Di�erent shifts were also included for each phase of the
inverse.
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Chapter 3

Implementation

3.1 General overview of the system

The camera provides the pixels in the image by bands. The �rst operations to be
performed with this data are to calculate the average, with it the deviation and then
the covariance. Because of the relative simplicity of these operations but their high
memory requirements, these three operations are performed on a CPU and their
results sent to the FPGA. The FPGA will start the calculation of the subsequent
operations only when it has the complete results of the covariance.
The data calculated by the CPU is entered into the FPGA through FIFOs.
The FPGA will then calculate the inverse of the matrix. Meanwhile the CPU will
have to write the calculated averages and the values it had previously received from
the camera, one by one. When the inverse is �nished, the FPGA will perform the last
two matrix multiplications and save the resulting data. With the last pixel processed,
the FPGA will write the anomalies ordered from highest to lowest in another FIFO
to be read by the CPU.

3.2 Description by module

3.2.1 Control

This module acts on the lower modules, both to control the data transfer between
them and to arbitrate the access to the RAMS and the FIFOs that communicate
with the CPU.
It is worth mentioning that it also performs some checks in the covariance transfer
to ensure that the �rst division of the inverse is not performed with a 0, that is, that
the position (0, 0) in the covariance matrix is di�erent from 0.
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Figure 3.1: A schematic of the whole system
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3.2.2 Inverter

The inverse is the most complex module and the one that consumes more hardware
resources. In addition, the study carried out on software has shown that it is by far
the step most susceptible to worsening the accuracy of the �nal results. For these
reasons, special emphasis has been placed on its design.

Figure 3.2: Schematic of the implemented inverter

As can be seen in Figure 3.2, there are numerous processes and sub-modules
within the inverter. The process that acts as an interface to the outside is counter,
which as its name suggests contains counters to calculate the rows to be read, written,
etc. It is the main process of the module. The counters are translated into addresses
by another pair of processes, more speci�cally addr, write and stall and a renaming
table to which these three have access. The data that are read from the memories
are then saved in temporary storage or directly to the arithmetic units. Before
the arithmetic units is another process, shift, which shifts the data as modeled in
software. These units are used for the three steps of the algorithm, upper triangle,
lower triangle and diagonal, and it is the counter process that controls their execution
order. The rest of the processes will be explained in more detail within the chapter.
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Agorithm optimizations for hardware

To improve the performance of the module, operations on the A matrix and the A−1
matrix are executed simultaneously. In addition, the divisor and DSP pipelines are
used to queue all possible consecutive operations. Pipeline stalling only occurs, if
calculations are still being processed with the last pivot row. Table 3.1 shows the
arithmetic units inside the module and their latencies. These latencies represent the
length of its pipeline.

Arithmetic Unit Latency Quantity Remarks

Division 77 1 Only one division is required each cycle
Multiplication 6 bands*2 To compute a whole row for both A and A−1

Subtraction 2 bands*2 To compute a whole row for both A and A−1

Table 3.1: Latencies and number of the arithmetic units in the inverter module.

Equations 3.3 indicate which calculations are found within the DSP pipeline at
any given time. The results of each operation are sent directly to the calculation of
the next operation, while the counters control that the other operands arrive at the
right time.

A−1[86]←A−1[86]− A[i]−1 ∗ A[86][i]/A[i][i] , A[86]←A[86]− A[i] ∗ A[86][i]/A[i][i]
...

...
A−1[10]←A−1[10]− A[i]−1 ∗ A[10][i]/A[i][i] , A[10]←A[10]− A[i] ∗ A[10][i]/A[i][i]

A−1[9]←A−1[9]− A[i]−1 ∗ div_result , A[9]←A[9]− A[i] ∗ div_result
...

...
A−1[3]←A−1[3]− A[i]−1 ∗ div_result , A[3]←A[3]− A[i] ∗ div_result

A−1[2]← A−1[2]−mul_result , A[2]← A[2]−mul_result

A−1[1]← A−1[1]−mul_result , A[1]← A[1]−mul_result

A−1[0]← sub_result , A[0]← sub_result

Figure 3.3: Operations representing the arithmetic pipeline at any given moment.
Colors denote if a operation is currently in progress.
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One of the operands is the row �, which is used at two di�erent times within the
algorithm (see Figure 3.4). Since a second read on the BRAM cannot be done since
it is busy performing the read of the next operations, this data is stored at the time
of reading in a FIFO and will be fetched when needed.

A−1[j]← A−1[j] − A[i] ∗ A[j][i] /A[i][i]

Figure 3.4: As can be seen in the algorithm, row j is used at two di�erent times.

Additionaly, it can be observed that in the �rst step in which the upper triangu-
lar matrix is constructed, the algorithm requires a check on the pivot row and a
possible exchange of rows. This is necessary because this value is later the dividend,
so a 0 would cause a failure in the calculation.
BRAM memory readings have a latency cycle, so reading an inappropriate value two
cycles in a row -in the case of reading an inappropriate and then an appropriate
value, there would be the possibility of performing an inplace row swap with the
pivot and the row just after it- would not only add latency to the calculation but
also increase the complexity of the module. Therefore, the dividend checks are done
on the writes, recorded in a renaming table that will be checked at the time of read-
ing. This ensures that the reads will always be valid for the calculation. In the case
of the very �rst division, this dividend comes directly from the CPU and the upper
module control is responsible for reordering this row if necessary.
This renaming table is located in registers, so it is possible to access it without any
latency and as it only contains indexes, it does not overload the FPGA resources.
In addition, this table is local, so the results have to be reordered in the RAM itself
before leaving the inverse module. Since these swaps only occur in the calculation of
the upper triangle, the lower triangle can be used to reorder them. The reordering
system is very simple, the data enters the pipeline according to the order that exists
in the renaming table and is written in its natural order. This implies that the re-
sults of this reordering will be correct as long as both rows that have been rotated
are at the same time in the processing pipeline, which in the case of �xed point is
approximately 90 in size. Experimental results show that it is rarely necessary to
rotate rows -although enough to recommend the inclusion of a method to deal with
it-, and that these rotations rarely exceed one or two positions in the pipeline.

In the transformation to integer arithmetic it was discovered that the calculation
of the inverse is the one introducing more error in the �nal results of the algorithm,
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therefore an exhaustive study on how to minimize it has been made. For this it has
been necessary to reduce the values in which the limited precision produced over�ows
and increase small values to give them more weight in the operations. By perform-
ing the operations of identity generation, upper triangle, lower triangle and diagonal
independently, it has been possible to place di�erent shift values and further re�ne
the resolution of the algorithm. These operations are performed by the shift process.
It should also be said that there is an error in the generation of Xilinx dividers. When
you enter numbers near the precision limit you lose control of the sign. Therefore,
div_�x, a process that converts all the entered operands into positives and saves
their position in a pipeline has been placed before the division. When the results are
produced, the tag is checked in the pipeline, the negative is calculated and replaced
if necessary.

3.2.3 Mean subtract

Figure 3.5: Schematic of mean subtract.

The mean subtract module receives the calculated average and the original pixels
of the image and subtracts them. This calculation is the deviation and although
it had already been calculated by the CPU, it is possible that the latter discards
the data to free up space. The calculation of the average is required because it is
assumed that its size being much smaller, the CPU can keep it in memory. In case
the deviation can be received directly from the CPU, this module can be simply
deleted. The module receives the elements from the upper module that reads them
from the same FIFO. The �rst elements are the average and are stored in a BRAM
that is treated as a circular bu�er, and the following elements are directly subtracted
and returned to the upper module again.
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3.2.4 Matrix multiplication

As noted above (see 2.0.3), this calculation can be implemented in two di�erent ways.
Following will be a comparison of the �rst required multiplication in both methods:

(x − µ)TK−1
N×N : A row from the inverse and the whole column of the

deviation get read, each element multiplied with its correspondent and
all products added together. If stalls were to be avoided, this sum would
need to be computed every cycle, which can easily be achieved with an
adder tree. a b c

d e f
g h i

 ∗
1
2
3

 =

1 ∗ a+ 2 ∗ b+ 3 ∗ c
1 ∗ d+ 2 ∗ e+ 3 ∗ f
1 ∗ g + 2 ∗ h+ 3 ∗ i


Figure 3.6: First proposed method for the computation of a single pixel: red, blue
and green represent data processed in the �rst, second and third cycles respectively.
Note that the entire deviation data of that pixel gets used every cycle

K−1
N×N(x− µ): The inverse gets also read row by row, but the deviation

matrix only by elements. Each element of the �rst row of the matrix gets
multiplied with the �rst element of the deviation, the result accumulated,
and continued with the next pair row/element. This goes for N cycles,
that is, a whole inverse matrix and a whole pixel in the deviation matrix.
The result is N accumulated values which get �ushed every N cycles,
which ends up being the same throughput as the former method.

(
1 2 3

)
∗

a b c
d e f
g h i

 =
(
1*a + 2*d + 3*g 1*b + 2*e + 3*h 1*c + 2*f + 3*i

)

Figure 3.7: Second proposed method: red, blue and green represent data processed in
the �rst, second and third cycles respectively. Here only an element of the deviation
data gets accessed each cycle.

While both methods have equivalent cost in time -the former has the added
latency of the adder tree, the latter the latency of the accumulators- and also similar
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cost in DSP usage, data input by row is less taxing on the CPU and its FIFO structure
can be reused for the second multiplication. Henceforth, the second approach was
chosen.

Figure 3.8: Schematic of the dual matrix multiplier

The second multiplication is similar in both steps, a 1 × N by N × 1 multipli-
cation. One operand comes every cycle and each N cycles all products get added
together. This sum is realized through an accumulator.

The module contains three subprocesses:

� �rst_mac reads the inverse and performs its multiplication with the received
deviation. This deviation is also stored in a FIFO. The products are then
accumulated till a whole pixel has been computed.

� second_mac stores the results of �rst_mac in registers and performs the mul-
tiplication with data from the FIFO, with the result being accumulated. Every
cycle, the registers are shifted so a new multiplication is done.

� write_proc controls the writing of the results from second_mac to the sorter
and computes the coords.
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3.2.5 Coordinate sorter

Figure 3.9: Schematic of the coordinate sorter

This module receives a value and a pair of coordinates every bands cycles. These
values are written in a BRAM memory that acts as an ordered list. Each entered
value is compared with the head of the list, the highest value is saved and the other
is saved in a temporary variable, compared with the second value in the list, and so
on. Since a value is received each bands, the maximum number of possible values to
be stored in this list is also bands. The rest of the values are discarded. When the
last value has been introduced, the module communicates the highest pixels, that is,
the most anomalous ones, to the superior module so that they are communicated to
the CPU.
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Chapter 4

Results

4.1 Recon�gurable platform

The architecture described in the previous section has been implemented using the
VHDL language. To test its correct operation, the Vivado environment and the
Virtex 690T FPGA 4.1 have been used. Although it is not a radiation-protected
FPGA, the architecture of this algorithm is scalable so that its adaptation to other
sensor sizes or FPGAs should not be a problem.

4.2 Hyperpectral image datasets

Two hyperspectral images have been used for the work, one taken by the HYDICE
sensor and the other by the AVIRIS sensor. Both images are commonly used as
reference in hyperspectral applications.

In the �eld of the scene captured by HYDICE, 15 panels of di�erent sizes were
placed on a �eld in a 3 x 5 meter con�guration. The following images show a false
color image with the bands 50, 37, and 17 as red, green and blue respectively [10]
and the location of the panels as detected by software.

Part number Slices Logic cells Flip-Flops BRAM DSP Slices
XCE7VX690T 108,300 693,120 866,400 1,470Kb 3,600

Table 4.1: Basic speci�cations of the Virtex 690T FPGA
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Horizontal res 64
Vertical res 64

Bands 210 (169*)
Spectral res 400 - 2500nm
Spatial res 1,56meter/pixel

Size 1,6 MB

Figure 4.1: HYDICE sensor information [3], image in false color and anomaly
map. *In this work, images and results are reported for 169 bands

The image taken by the AVIRIS sensor was taken on September 16, 2001, �ve days
after the terrorist attacks that brought down the WTC towers and its surrounding
buildings. The spatial resolution of this image is very high because a very low al-
titude �ight was performed. Along with the false color image, an image with the
anomalies detected by software is provided. To ease the recognition of these anoma-
lies, a circle has been painted around each group of anomalues for the �rst 30.

Horizontal res 614
Vertical res 512

Bands 224
Spectral res 360 - 2500nm
Spatial res 1,7meter/pixel

Size 140 MB

Figure 4.2: AVIRIS sensor information [2], image in false color and anomaly map
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4.3 Adequacy of approximation

4.3.1 Floating point

The results provided by the �oating point version of this system are the same as
those provided by the equivalent software version, so it can be considered valid.

4.3.2 Fixed point

The �xed point version of the system is an approach to the �oating point system
with the intention of maintaining the highest possible accuracy with limited use of
resources. Therefore, the results are di�erent and an assessment of their accuracy
must be made. For this purpose, three metrics have been used.

In the �rst and simplest, it has been veri�ed that the number of detected anomalies
can be found in the �rst x positions in both results, regardless of the order.

Extending the previous strategy, it has been checked for the non-coinciding elements,
if any neighbor has been detected in the environment. A neighbor is de�ned as an
adjacent pixel, both in a straight line and in diagonal.

Finally, the �rst strategy has been extended again, this time it has been checked
if for the non-coincidences an anomaly with a spectral similarity of less than 5 de-
grees has been found.

Spectral similarity The Spectral Angle Mapper (SAM) is a physics-based spec-
tral classi�cation that uses an n-D angle to match pixels with reference spectra. The
algorithm (see section 4.3.2) determines the spectral similarity between two spectra
by calculating the angle between the spectra and treating them as vectors in a space
with a dimensionality equal to the number of bands. This technique, when used in
calibrated re�ectance data, is relatively insensitive to the e�ects of illumination and
albedo.
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α = cos−1


nb∑
i=1

tiri(
nb∑
i=1

t2i

)1/2( nb∑
i=1

r2i

)1/2


α = spectral angle between vectors
nb = number of spectral bands
t = target pixel
r = reference pixel

Figure 4.3: Spectral Angle Mapper algorithm

4.3.3 Results for HYDICE

Every pixel is found in the same order in reference and simulated calculations. Also,
since those pixels are found equally, it is obvious that they are also found as neigh-
boring pixels and are spectrally similar. Since it is an image taken to test the sensor,
the targets are big and clear, and the image is quite easy to analyze.

4.3.4 Results for AVIRIS

The WTC image is more complex and the detection of exact pixels and neighbors
quickly falls. However, the spectral signatures match for the most part, especially
considering the number of real hot spots found in the image. Therefore, the results
can also be taken as successful.
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Figure 4.4: A diagram showing similarities between referenced and achieved results
and reference and achieved results mapped as in the original image for the HYDICE
dataset
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Figure 4.5: A diagram showing similarities between referenced and achieved results
and reference and achieved results mapped as in the original image for the AVIRIS
dataset
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It should be noted that the shift values within the calculations have been adapted for
each image with the intention of detecting the greatest number of anomalies possible,
so that the results obtained in a real system will be slightly lower. Even so, the values
between the two images are quite similar, despite the great di�erence between the
data they represent.
In addition, since it is a recon�gurable system, these values can be modi�ed after the
system is put into operation, both to accept a wider range of images, and to obtain
more accurate results.

4.4 Computational e�ciency

When evaluating performance, both resources used (section 4.4) and processing time
(Table 4.4) must be assessed. These data are given both in those obtained for the
two sensors and according to their characteristics, more speci�cally number of bands
and pixels.
It should be noted that performance data has been obtained by ignoring the input
and output of data, which is often the bottleneck in this type of system.

Module LUT Register BRAM DSP

Inverse 410 ∗ bands+ 3484 316 ∗ bands+ 10427 < bands 10 ∗ bands
Mean subtraction bands+ 41 136 0 1

Matrix multiplication 80 ∗ bands+ 75 91 ∗ bands+ 223 pixels/64 4 ∗ bands
Sort results 186 176 0 0

Table 4.2: FPGA resources used in relation to number of bands and number of
pixels

Stage Latency

Inverse O(bands+ bands2) = O(bands2)
Mean subtraction O(1)

Matrix multiplication O(bands ∗ pixels+ bands)
Sort results O(2 ∗ bands) = O(bands)

Table 4.3: Latency between end of previous module and end of current one
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Finally, the total resource utilization for both datasets and processing time is also
given in Table 4.4.

Hydice Aviris

LUT 224.363 296.155
Register 98.470 126.274
BRAM 629 133
DSP 2.371 3.141

Frecuency 5,5 ns 5,5 ns
Cycles 1.443.418 140.927.349

Full computation 7,938799 milliseconds 775,10042 milliseconds

Table 4.4: Resource and processing time for both datasets
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Chapter 5

Conclusions

Hyperspectral image processing is a very powerful tool that facilitates mining opera-
tions, target tracking or contamination analysis. The technological advances in these
cameras accentuates the need to perform this type of analysis on board and with it
the use of speci�c platforms such as FPGAs.

The complete analysis of this type of images is not always feasible and target detec-
tion algorithms such as the one presented here allow not only a signi�cant reduction
in bandwidth requirements but also allow the use of this type of sensors in real-time
applications.

The results obtained are positive since they show a reduction in the use of resources
and compared to other previous implementations thanks to its approach through the
use of �xed point logic. The use of a recon�gurable platform also allows the precision
of this system to be adjusted even after it has been put into operation.
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