
Vivado Design Suite Tutorial

Programming and Debugging

UG936 (v2018.2) June 6, 2018

 Revision History

Programming and Debugging www.xilinx.com 2
UG936 (v2018.2) June 6, 2018

Revision History
The following table shows the revision history for this document.

Section Revision Summary

06/06/2018 Version 2018.2

General updates Editorial updates only. No technical content updates.

04/27/2018 Version 2018.1

General updates General updates

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=2

Programming and Debugging www.xilinx.com 3
UG936 (v2018.2) June 6, 2018

Table of Contents

Revision History .. 2

Debugging in Vivado Tutorial .. 6

Introduction ... 6

Objectives ... 6

Getting Started .. 7

Lab 1: Using the Netlist Insertion Method for Debugging a Design .. 13

Introduction ... 13

Step 1: Creating a Project with the Vivado New Project Wizard .. 13

Step 2: Synthesizing the Design ... 14

Step 3: Probing and Adding Debug IP ... 15

Step 4: Implementing and Generating Bitstream. ... 24

Lab 2: Using the HDL Instantiation Method for Debugging a Design in Vivado ... 25

Introduction ... 25

Step 1: Creating a Project with the Vivado New Project Wizard .. 25

Step 2: Synthesize Implement and Generate Bitstream .. 27

Lab 3: Using a VIO Core for Debugging a Design in Vivado ... 28

Introduction ... 28

Step 1: Creating a Project with the Vivado New Project Wizard .. 29

Step 2: Synthesize, Implement, and Generate Bitstream .. 34

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design ... 35

Introduction ... 35

Step 1: Create a Synplify Pro Project .. 35

Step 2: Synthesize the Synplify Project .. 43

Step 3: Create DCPs for the Black Box Created in Synplify Pro .. 44

Step 4: Create a Post Synthesis Project in Vivado IDE ... 44

Step 5: Add More Debug Nets to the Project ... 46

Step 6: Implementing the Design and Generating the Bitstream ... 48

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=3

Programming and Debugging www.xilinx.com 4
UG936 (v2018.2) June 6, 2018

Lab 5: Using Vivado Logic Analyzer to Debug Hardware.. 49

Introduction ... 49

Step 1: Verifying Operation of the Sine Wave Generator ... 49

Step 2: Debugging the Sine Wave Sequencer State Machine (Optional) ... 61

Lab 6: Using ECO Flow to Replace Debug Probes Post Implementation .. 81

Lab 7: Debugging Designs Using Incremental Compile Flow ... 97

Introduction ... 97

Procedure .. 97

Step 1: Opening the Example Design and Adding a Debug Core ... 97

Step 2: Compiling the Reference Design ... 102

Step 3: Create New Runs .. 103

Step 4: Making Incremental Debug Changes ... 105

Step 5: Running Incremental Compile .. 108

Conclusion ... 111

Lab 8: Using Vivado Serial Analyzer to Debug Serial Links .. 113

Introduction .. 113

Design Description ... 114

Step 1: Creating, Customizing, and Generating an IBERT Design .. 115

Step 2: Adding an IBERT core to the Vivado Project ... 116

Step 3: Synthesize, Implement and Generate Bitstream for the IBERT design 123

Step 4: Interact with the IBERT core using Serial I/O Analyzer .. 125

Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions ... 143

Introduction .. 143

Design Description ... 144

Step 1: Opening the JTAG to AXI Master IP Example Design and Configuring the AXI Interface Debug

Connections .. 144

Step 2: Program the KC705 Board and Interact with the JTAG to AXI Master Core 161

Step 3: Using ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction 169

Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links .. 175

Introduction .. 175

Step 1: Generating Zynq UltraScale+ MPSoC PS Hardware Definition File (HDF) 176

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=4

Programming and Debugging www.xilinx.com 5
UG936 (v2018.2) June 6, 2018

Step 2: Using XSCT flow to generate FSBL by using HDF .. 192

Step 3: ZCU102 Board Settings .. 193

Using FSBL with Serial I/O Analyzer to bring up IBERT GTR ... 194

Troubleshooting .. 205

Using SDK Flow or XSCT Flow to Generate FSBL by Using HDF ... 206

Legal Notices ... 212

Please Read: Important Legal Notices .. 212

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=5

Programming and Debugging www.xilinx.com 6
UG936 (v2018.2) June 6, 2018

Debugging in Vivado Tutorial

Introduction
This document contains a set of tutorials designed to help you debug complex FPGA designs. The first

four labs explain different kinds of debug flows that you can chose to use during the course of debug.

These labs introduce the Vivado® debug methodology recommended to debug your FPGA designs.

The labs describe the steps involved in taking a small RTL design and the multiple ways of inserting the

Integrated Logic Analyzer (ILA) core to help debug the design. The fifth lab is for debugging high-speed

serial I/O links in Vivado. The sixth lab is for debugging JTAG-AXI transactions in Vivado. The first four

labs converge at the same point when connected to a target hardware board.

Example RTL designs are used to illustrate overall integration flows between Vivado logic analyzer, ILA,

and Vivado Integrated Design Environment (IDE). In order to be successful using this tutorial, you

should have some basic knowledge of Vivado Design Suite tool flow.

TRAINING: Xilinx provides training courses that can help you learn more about the

concepts presented in this document. Use these links to explore related courses:

 Vivado Design Suite Hands-on Introductory Workshop Training Course

 Vivado Design Suite Tool Flow Training Course

 Essentials of FPGA Design Training Course

 Designing FPGAs Using the Vivado Design Suite 1

 Designing FPGAs Using the Vivado Design Suite 2

 Designing FPGAs Using the Vivado Design Suite 3

 Designing FPGAs Using the Vivado Design Suite 4

 Vivado Design Suite User Guide: Programming and Debugging (UG908)

Objectives
These tutorials:

 Show you how to take advantage of integrated Vivado logic analyzer features in the Vivado

design environment that make the debug process faster and simpler.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-intro-workshop.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-intro-workshop.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-intro-workshop.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-intro-workshop.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=fpga/essentials-of-fpga-design.htm
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-4.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=6

 Debugging in Vivado Tutorial

Programming and Debugging www.xilinx.com 7
UG936 (v2018.2) June 6, 2018

 Provide specifics on how to use the Vivado IDE and the Vivado logic analyzer to debug common

problems in FPGA logic designs.

 Provide specifics on how to use the Vivado Serial I/O Analyzer to debug high-speed serial links.

After completing this tutorial, you will be able to:

 Validate and debug your design using the Vivado Integrated Design Environment (IDE) and the

Integrated Logic Analyzer (ILA) core.

 Understand how to create an RTL project, probe your design, insert an ILA core, and implement

the design in the Vivado IDE.

 Generate and customize an IP core netlist in the Vivado IDE.

 Debug the design using Vivado logic analyzer in real-time, and iterate the design using the

Vivado IDE and a KC705 Evaluation Kit Base Board that incorporates a Kintex®-7 device.

 Analyze high-speed serial links using the Serial I/O Analyzer.

Getting Started

Setup Requirements

Before you start this tutorial, make sure you have and understand the hardware and software

components needed to perform the labs included in this tutorial as listed below.

Software

 Vivado Design Suite 2018.1

Hardware

 Kintex-7 FPGA KC705 Evaluation Kit Base Board

 Digilent Cable

 Two SMA (Sub-miniature version A) cables

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=7

 Debugging in Vivado Tutorial

Programming and Debugging www.xilinx.com 8
UG936 (v2018.2) June 6, 2018

Figure 1: KC705 Board Showing Key Components

Tutorial Design Components

Labs 1 through 4 include:

 A simple control state machine

 Three sine wave generators using AXI-Streaming interface, native DDS Compiler

 Common push buttons (GPIO_BUTTON)

 DIP switches (GPIO_SWITCH)

 LED displays (GPIO_LED) VIO Core (Lab 3 only)

Push Button Switches: Serve as inputs to the de-bounce and control state machine circuits. Pushing a

button generates a high-to-low transition pulse. Each generated output pulse is used as an input into

the state machine.

DIP Switch: Enables or disables a de-bounce circuit.

De-bounce Circuit: In this example, when enabled, provides a clean pulse or transition from high to

low. Eliminates a series of spikes or glitches when a button is pressed and released.

Sine Wave Sequencer State Machine: Captures and decodes input from the two push buttons.

Provides sine wave selection and indicator circuits, sequencing among 00, 01, 10, and 11 (zero to three).

LED Displays: GPIO_LED_0 and GPIO_LED_1 display selection status from the state machine outputs,

each of which represents a different sine wave frequency: high, medium, and low.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=8

 Debugging in Vivado Tutorial

Programming and Debugging www.xilinx.com 9
UG936 (v2018.2) June 6, 2018

Lab 5 includes:

 An IBERT core

 A top-level wrapper that instantiates the IBERT core.

Board Support and Pinout Information

Table 1: Pinout Information for the KC705 Board

Pin Name Pin Location Description

CLK_N AD11 Clock

CLK_P AD12 Clock

GPIO_BUTTONS[0] AA12 Reset

GPIO_BUTTONS[1] AG5 Sine Wave Sequencer

GPIO_SWITCH Y28 De-bounce Circuit Selector

LEDS_n[0] AB8 Sine Wave Selection[0]

LEDS_n[1] AA8 Sine Wave Selection[1]

LEDS_n[2] AC9 Reserved

LEDS_n[3] AB9 Reserved

Design Files

1. In your C: drive, create a folder called /Vivado_Debug.

2. Download the Reference Design Files from the Xilinx website.

CAUTION! The tutorial and design files may be updated or modified between software releases.

You can download the latest version of the material from the Xilinx website.

3. Unzip the tutorial source file to the /Vivado_Debug folder. There are six labs that use different

methodologies for debugging your design. Select the appropriate lab and follow the steps to

complete them

Send Feedback

http://www.xilinx.com/
http://secure.xilinx.com/webreg/clickthrough.do?cid=7ae2a885-e251-45e3-bbf9-abd1da152b13
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=9

 Debugging in Vivado Tutorial

Programming and Debugging www.xilinx.com 10
UG936 (v2018.2) June 6, 2018

Lab 1: This lab walks you through the steps of marking nets for debug in HDL as well as the post-

synthesis netlist (Netlist Insertion Method). Following are the required files:

 debounce.vhd

 fsm.vhd

 sinegen.vhd

 sinegen_demo.vhd

 sine_high/sine_high.xci

 sine_low/sine_low.xci

 sine_mid/sine_mid.xci

 sinegen_demo_kc705.xdc

Lab 2: This lab goes over the details of marking nets for debug in the source HDL (HDL instantiation

method) as well as instantiating an ILA core in the HDL. Following are the required files:

 debounce.vhd

 fsm.vhd

 sinegen.vhd

 sinegen_demo_inst.vhd

 ila_0/ila_0.xci

 sine_high/sine_high.xci

 sine_low/sine_low.xci

 sine_mid/sine_mid.xci

 sinegen_demo_kc705.xdc

Lab 3: You can test your design even if the hardware is not physically accessible, using a VIO core. This

lab walks you through the steps of instantiating and customizing a VIO core that you will hook to the

I/Os of the design. Following are the required files:

 debounce.vhd

 fsm.vhd

 sinegen.vhd

 sinegen_demo_inst_vio.vhd

 sine_high/sine_high.xci

 sine_low/sine_low.xci

 sine_mid/sine_mid.xci

 ila_0/ila_0.xci

 sinegen_demo_kc705.xdc

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=10

 Debugging in Vivado Tutorial

Programming and Debugging www.xilinx.com 11
UG936 (v2018.2) June 6, 2018

Lab 4: Nets can also be marked for debug in a third-party synthesis tool using directives for the

synthesis tool. This lab walks you through the steps of marking nets for debug in the Synplify tool and

then using Vivado to perform the rest of the debug. Following are the required files:

 debounce.vhd

 fsm.vhd

 sign_high.dcp

 sign_low.dcp

 sine_mid.dcp

 sine_high.xci

 sine_low.xci

 sine_mid.xci

 sinegen.edn

 sinegen_synplify.vhd

 synplify_1.sdc

 synplify_1.fdc

 sinegen_demo_kc705.xdc

Lab 5: Take designs created from Lab 1, Lab 2, Lab 3, and Lab 4 and load them onto the KC705 board.

Lab 6: Enhance post implementation debugging by using the ECO flow to replace debug probes.

Lab 7: Use the Incremental Compile flow to enable faster debugging flows. Using the results from a

previous implementation run, this flow allows you to make debug modifications and rerun

implementation.

Lab 8: Debug high-speed serial I/O links using the Vivado Serial I/O Analyzer. This lab uses the Vivado

IP example design.

Lab 9: Use Vivado ILA core to debug JTAG-to-AXI transactions. This lab uses the Vivado IP example

design.

Lab 10: Evaluate and Monitor IBERT UltraScale+™ GTR (IBERT GTR) transceivers in Zynq® UltraScale+

MPSoC™ devices. This lab takes you through the steps of configuring the GTR, generating the FSBL

(First Stage Boot Loader file) and using the Vivado Serial Analyzer tool to debug the links.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=11

 Debugging in Vivado Tutorial

Programming and Debugging www.xilinx.com 12
UG936 (v2018.2) June 6, 2018

Connecting the Boards and Cables

1. Connect the Digilent cable from the Digilent cable connector to a USB port on your computer.

2. Connect the two SMA cables (for lab 5 only) as follows:

a. Connect one SMA cable from J19 (TXP) to J17 (RXP).

b. Connect the other SMA cable from J20 (TXN) to J66 (RXN).

The relative locations of SMA cables on the board are shown in Figure 1: KC705 Board Showing Key

Components.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=12

Programming and Debugging www.xilinx.com 13
UG936 (v2018.2) June 6, 2018

Lab 1: Using the Netlist Insertion Method for
Debugging a Design

Introduction
In this lab, you will mark signals for debug in the source HDL as well as the post synthesis netlist. Then

you will create an ILA core and take the design through implementation. Finally, you will use Vivado®

to connect to the KC705 target board and debug your design using Vivado Integrated Logic Analyzer.

Step 1: Creating a Project with the Vivado New Project
Wizard
To create a project, use the New Project wizard to name the project, to add RTL source files and

constraints, and to specify the target device.

1. Invoke the Vivado IDE.

2. In the Getting Started page, click Create Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project proj_netlist and provide the project location

(C:/Vivado_Debug). Ensure that Create Project Subdirectory is selected and click Next.

4. In the Project Type page, specify the type of project to create as RTL Project. Click Next.

5. In the Add Sources page:

a. Set Target Language to VHDL.

b. Click the green “+” sign, and then click Add Files.

c. In the Add Source Files dialog box, navigate to the /src/lab1 directory.

d. Select all VHD source files, and click OK.

e. Verify that the files are added, and Copy Sources into project is selected.

6. Click Add.

7. In the Add Directories dialog box, navigate to the /src/lab1 directory.

8. Select sine_high, sine_low, and sine_mid directories and click Select.

9. Verify that the directories are added. Click Next.

10. In the Add Constraints dialog box, click the “+” sign, and then click Add Files.

11. Navigate to /src/lab1 directory and select sinegen_demo_kc705.xdc. Click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=13

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 14
UG936 (v2018.2) June 6, 2018

12. In the Default Part dialog box, specify the xc7k325tffg900-2 part for the KC705 platform. You can

also select Boards and then select Kintex-7 KC705 Evaluation Platform. Click Next.

13. Review the New Project Summary page. Verify that the data appears as expected, per the steps

above, and click Finish.

Note: It could take a moment for the project to initialize.

Step 2: Synthesizing the Design
1. In the Project Manager, click Settings as shown in the following figure.

Figure 2: Configuring the Settings

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=14

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 15
UG936 (v2018.2) June 6, 2018

IMPORTANT: As an optional step, in the Settings dialog box, select Synthesis from the left and

change flatten hierarchy to none. The reason for changing this setting to none is to prevent the

synthesis tool from performing any boundary optimizations for this tutorial.

2. In the Vivado Flow Navigator, expand the Synthesis drop-down list, and click Run Synthesis. In

the Launch Runs dialog box, accept all of the default settings (Launch runs on local host), and click

OK.

Note: When synthesis runs, a progress indicator appears, showing that synthesis is occurring. This

could take a few minutes.

3. In the Synthesis Completed dialog box, click Cancel as shown in the following figure. You will

implement the design later.

Figure 3: Synthesis Completed Dialog Box

Step 3: Probing and Adding Debug IP
To add a Vivado ILA core to the design, take advantage of the integrated flows between the Vivado IDE

and Vivado logic analyzer.

In this step, you will accomplish the following tasks:

 Add debug nets to the project.

 Run the Set Up Debug wizard.

 Implement and open the design.

 Generate the bitstream.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=15

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 16
UG936 (v2018.2) June 6, 2018

Adding Debug Nets to the Project

Following are some ways to add debug nets using the Vivado IDE:

 Add MARK_DEBUG attribute to HDL files.

VHDL

attribute mark_debug : string;

attribute mark_debug of sine : signal is "true";

attribute mark_debug of sineSel : signal is "true";

Verilog

(* mark_debug = "true" *) wire sine;

(* mark_debug = "true" *) wire sineSel;

This method lets you probe signals at the HDL design level. This can prevent optimization that

might otherwise occur to that signal. It also lets you pick up the signal tagged for post synthesis, so

you can insert these signals into a debug core and observe the values on this signal during FPGA

operation. This method gives you the highest probability of preserving HDL signal names after

synthesis.

 Right-click and select Mark Debug or Unmark Debug on a synthesized netlist.

This method is flexible since it allows probing the synthesized netlist in the Vivado IDE and allows

you to add/remove MARK_DEBUG attributes at any hierarchy in the design. In addition, this method

does not require HDL source modification. However, there may be situations where synthesis may

not preserve the signals due to netlist optimization involving absorption or merging of design

structures.

 Use a Tcl prompt to set the MARK_DEBUG attribute on a synthesized netlist.

set_property mark_debug true [get_nets -hier [list {sine[*]}]]

This applies the MARK_DEBUG on the current, open netlist.

This method is flexible since you can turn MARK_DEBUG on and off by modifying the Tcl command.

In addition, this method does not require HDL source modification. However, there may be

situations where synthesis does not preserve the signals due to netlist optimization involving

absorption or merging of design structures.

In the following steps, you learn how to add debug nets to HDL files and the synthesized design using

Vivado IDE.

TIP: Before proceeding, make sure that the Flow Navigator on the left panel is enabled.

Use Ctrl-Q to toggle it off and on.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=16

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 17
UG936 (v2018.2) June 6, 2018

1. In the Flow Navigator under the Synthesis drop-down list, click Open Synthesized Design as

shown in the following figure.

Figure 4: Open Synthesized Design

2. In the main toolbar drop-down menu, select Debug. When the Debug window opens. Click the

window if it is not already selected.

3. Expand the Unassigned Debug Nets folder. The following figure shows those debug nets that were

tagged with MARK_DEBUG attributes in sinegen_demo.vhd.

Figure 5: VHDL Example Using MARK_DEBUG Attributes

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=17

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 18
UG936 (v2018.2) June 6, 2018

Figure 6: Unassigned Debug Nets Post-Synthesis

4. In the Netlist window, elect the Netlist tab and expand Nets. Select the following nets for

debugging as shown in the following figure.

o GPIO_BUTTONS_IBUF[0] and GPIO_BUTTONS_IBUF[1] - Nets folder under the top-

level hierarchy

o sel(2) - Nets folder under the U_SINEGEN hierarchy

o sine(20)- Nets folder under the U_SINEGEN hierarchy

Figure 7: Add Nets for Debug from the Synthesized Netlist

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=18

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 19
UG936 (v2018.2) June 6, 2018

Note: These signals represent the significant behavior of this design and are used to verify and

debug the design in subsequent steps.

5. Right-click the selected nets and select Mark Debug as shown in the following figure.

Figure 8: Adding Nets from the Netlist Tab

6. Next, mark nets for debug in the Tcl console. Mark nets “sine(20)” under the U_SINEGEN

hierarchy for debug by executing the following Tcl command.

set_property mark_debug true [get_nets -hier [list {sine[*]}]]

TIP: In the Debug window, you can see the unassigned nets you just selected. In the

Netlist window, you can also see the green bug icon next to each scalar or bus, which

indicates that a net has the attribute mark_debug = true as shown the following two

figures.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=19

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 20
UG936 (v2018.2) June 6, 2018

Figure 9: Newly Added Nets for Debug from the Synthesized Netlist

Figure 10: Netlist View of Nets Marked for Debug

Running the Set Up Debug Wizard

1. From the Debug window tool bar or Tools drop-down menu, select Set Up Debug. The Set up

Debug wizard opens.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=20

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 21
UG936 (v2018.2) June 6, 2018

Figure 11: Launching the Set up Debug Wizard

2. When the Set up Debug wizard opens, click Next.

Figure 12: Set up Debug Wizard

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=21

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 22
UG936 (v2018.2) June 6, 2018

3. In the Nets to Debug page, shown in the following figure, ensure that all the nets have been added

for debug and click Next.

Figure 13: Specify Nets to Debug

4. In the ILA Core Options page, go to Trigger and Storage Settings section and select both

Capture Control and Advanced Trigger. Click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=22

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 23
UG936 (v2018.2) June 6, 2018

5. In the Setup Debug Summary page, make sure that all the information is correct and as expected.

Click Finish.

Figure 14: Set up Debug Summary

Upon clicking Finish, the relevant XDC commands that insert the ILA core(s) are generated.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=23

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 24
UG936 (v2018.2) June 6, 2018

Step 4: Implementing and Generating Bitstream.
1. In the Flow Navigator, under Program and Debug, click Generate Bitstream.

Figure 15: Implement Design and Generate Bitstream

2. In the Save Project dialog box click Save. This applies the MARK_DEBUG attributes on the newly

marked nets. You can see those constraints by inspecting the sinegen_demo_kc705.xdc file.

3. When the No Implementation Results Available dialog box pops up, click Yes. In the Launch

Runs dialog box, accept all of the default settings (Launch runs on local host) and click OK.

4. When the bitstream generation completes, the Bitstream Generation Completed dialog box pops

up. Click OK.

5. In the dialog box asking to close synthesized design before opening implemented design. Click Yes.

6. Examine the Timing Summary report to ensure that all the specified timing constraints are met.

Figure 16: View the Timing Summary Report

Proceed to Lab 5: Using Vivado Logic Analyzer to Debug Hardware to complete the rest of the steps for

debugging the design.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=24

Programming and Debugging www.xilinx.com 25
UG936 (v2018.2) June 6, 2018

Lab 2: Using the HDL Instantiation Method for
Debugging a Design in Vivado

Introduction
The HDL Instantiation method is one of the two methods supported in Vivado® Debug Probing. For

this flow, you will generate an ILA IP using the Vivado IP Catalog and instantiate the core in a design

manually as you would with any other IP.

Step 1: Creating a Project with the Vivado New Project
Wizard
To create a project, use the New Project wizard to name the project, to add RTL source files and

constraints, and to specify the target device.

1. Invoke the Vivado IDE.

2. In the Quick Start tab, click Create Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project proj_hdl and provide the project location

(C:/Vivado_Debug). Ensure that Create project subdirectory is selected. Click Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources page:

a. Set Target Language to VHDL.

b. Click the “+” sign, and then click Add Files.

c. In the Add Source Files dialog box, navigate to the /src/lab2 directory, and choose the

sine_high, sine_low, sine_mid, and ila_0 directories. Click Select.

d. Select all VHD source files, and click OK.

e. Verify that the files are added, and Copy Sources into Project is selected.

6. Click the “+” sign, and then click Add Files.

7. Navigate to the /src/lab2/sine_high directory.

8. Verify that the directories are added, and Copy Sources into Project is selected. Click Next.

9. In the Add Constraints dialog box, click the green “+” sign, and then click Add Files.

10. Navigate to /src/lab1 directory and select sinegen_demo_kc705.xdc. Click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=25

 Lab 2: Using the HDL Instantiation Method for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 26
UG936 (v2018.2) June 6, 2018

11. In the Default Part page, specify the xc7k325tffg900-2 part for the KC705 platform. You can also

select Boards and then select Kintex-7 KC705 Evaluation Platform. Click Next.

12. Review the New Project Summary page. Verify that the data appears as expected, per the steps

above. Click Finish.

13. In the Sources window in Vivado IDE, expand sinegen_demo_inst to see the source files for this

lab. Note that ila_0 core has been added to the project.

Figure 17: ILA Instantiation in HDL

14. Double-click the sinegen_demo_inst.vhd file, shown in the following figure to open it and inspect

the instantiation and port mapping of the ILA core in the HDL code.

Figure 18: Hook Signals that Require Debugging in the ILA

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=26

 Lab 2: Using the HDL Instantiation Method for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 27
UG936 (v2018.2) June 6, 2018

Step 2: Synthesize Implement and Generate Bitstream
1. From the Program and Debug drop-down list, in Flow Navigator, click Generate Bitstream. This

will synthesize, implement and generate a bitstream for the design.

Figure 19: Generate Bitstream

2. The No Implementation Results Available dialog box appears. Click Yes. In the Launch Runs

dialog box, accept all of the default settings (Launch runs on local host) and click OK.

3. After bitstream generation completes, the Bitstream Generation Completed dialog box appears.

Open Implemented Design is selected by default. Click OK.

4. In the Design Timing Summary window, ensure that all timing constraints are met.

Figure 20: Review Design Timing Summary

5. Proceed to Lab 5: Using Vivado Logic Analyzer to Debug Hardware chapter to complete the rest of

this lab.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=27

Programming and Debugging www.xilinx.com 28
UG936 (v2018.2) June 6, 2018

Lab 3: Using a VIO Core for Debugging a Design in
Vivado

Introduction
The Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive internal

FPGA signals in real time. The number and width of the input and output ports are customizable in size

to interface with the FPGA design. Because the VIO core is synchronous to the design being monitored

and/or driven, all design clock constraints that are applied to your design are also applied to the

components inside the VIO core. Run time interaction with this core requires the use of the Vivado®

logic analyzer feature. The following figure is a block diagram of the new VIO core.

Figure 21: VIO Block Diagram

This lab walks you through the steps of instantiating and configuring the VIO core. It walks you through

the steps of connecting the I/Os of the design to the VIO core. This way, you can debug your design

when you do not have access to the hardware or the hardware is remotely located.

The following ports are created:

 One 4-bit PROBE_IN0 port. This has two bits to monitor the 2-bit Sine Wave selector outputs

from the finite state machine (FSM) and other two bits to mimic the state of the other two LEDs

on the board. We will configure these 4-bit signals as LEDs during run time to mimic the LEDs

displayed on the KC705 board.

 One 2-bit PROBE_OUT0 port to drive the input buttons on the FSM. We will configure it so one

bit can be used as a toggle switch during run time to mimic the “PUSH_BUTTON”, SW3, and

second bit will be used as the “PUSH_BUTTON”, SW6.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=28

 Lab 3: Using Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 29
UG936 (v2018.2) June 6, 2018

Step 1: Creating a Project with the Vivado New Project
Wizard
To create a project, use the New Project wizard to name the project, to add RTL source files and

constraints, and to specify the target device.

1. Invoke Vivado IDE.

2. In the Quick Start tab, click Create Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project proj_hdl_vio and provide the project location

(C:/Vivado_Debug). Ensure that Create project subdirectory is selected. Click Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources page:

a. Set Target Language to VHDL.

b. Click Add Files.

c. In the Add Source Files dialog box, navigate to the /src/lab3 directory.

d. Select all VHD source files, and click OK.

e. Verify that the files are added, and Copy Sources into Project is selected. Click Next.

6. Click the green “+” sign, and then click Add Files.

7. In the Add Source Directories dialog box, navigate to the /src/lab3 directory and choose the

sine_high, sine_low, sine_mid, and ila_0 directories. Click Select.

8. Verify that the files are added and Copy sources into project is selected. Click Next.

9. In the Add Constraints dialog box, click the “+” sign, and then click Add Files.

10. Navigate to /src/lab3 directory and select sinegen_demo_kc705.xdc. Click Next.

11. In the Default Part page, specify the xc7k325tffg900-2 part for the KC705 platform. You can also

select Boards and then select Kintex-7 KC705 Evaluation Platform. Click Next.

12. Review the New Project Summary page. Verify that the data appears as expected, per the steps

above. Click Finish.

Note: It might take a moment for the project to initialize.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=29

 Lab 3: Using Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 30
UG936 (v2018.2) June 6, 2018

13. In the Sources window in Vivado IDE, expand sinegen_demo_inst_vio to see the source files for this

lab. Note that ila_0 core has been added to the project. However, vio_0 (the VIO core) is missing.

Figure 22: Missing Source for VIO Core

14. In this step, you will instantiate and configure this VIO core. From the Flow Navigator, click IP

Catalog, expand Debug & Verification, then expand Debug, and double-click VIO. The Customize

IP dialog box opens.

15. On the General Options tab, leave the Component Name to its default value of vio_0, set Input

Probe Count to 1, Output Probe Count to 1, and select the Enable Input Probe Activity

Detectors check box.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=30

 Lab 3: Using Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 31
UG936 (v2018.2) June 6, 2018

Figure 23: Configure General Options of the VIO Core

16. On the PROBE_IN Ports tab, set Probe Width to 4 bits wide.

Figure 24: Configure PROBE_IN Ports of the VIO Core

17. On the PROBE _OUT Ports, set Probe Width to 2 bits wide with an initial value of 0 in hex format.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=31

 Lab 3: Using Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 32
UG936 (v2018.2) June 6, 2018

Figure 25: Configure the PROBE_OUT Ports of the VIO Core

18. Click OK to generate the IP. The Generate Output Products dialog box will appear. Click Generate.

Figure 26: Generate Output Products for the VIO Core

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=32

 Lab 3: Using Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 33
UG936 (v2018.2) June 6, 2018

Output product generation should take less than a minute. At this point, you have finished

customizing the VIO. This core has already been instantiated in the top level design as shown in the

following figure.

Figure 27: VIO Instantiation in the Top Level Design

At this point, the Sources window should look as shown in the following figure.

Figure 28: Instantiated VIO Core in the Sources Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=33

 Lab 3: Using Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 34
UG936 (v2018.2) June 6, 2018

19. Double-click sinegen_demo_inst.vhd in the Sources window, to open it and inspect the

instantiation and port mapping of the ILA core in the HDL code.

Figure 29: Hook signals that need to be debugged in the ILA

Step 2: Synthesize, Implement, and Generate Bitstream
1. From the Program and Debug drop-down list, in Flow Navigator, click Generate Bitstream. This

synthesizes, implements, and generates a bitstream for the design.

2. The Missing Implementation Results dialog box appears. Click OK.

3. After bitstream generation completes, the Bitstream Generation Completed dialog box appears.

Open Implemented Design is selected by default. Click OK.

4. Inspect the Timing Summary report and make sure that all timing constraints have been met.

Figure 30: Report Timing Summary Dialog Box

5. Proceed to Lab 5: Using Vivado Logic Analyzer to Debug Hardware chapter to complete the rest of

the steps for debugging the design. Skip forward to Verifying the VIO Core Activity (Only

applicable to Lab 3) section to complete the rest of this lab.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=34

Programming and Debugging www.xilinx.com 35
UG936 (v2018.2) June 6, 2018

Lab 4: Using Synplify Pro Synthesis Tool and Vivado
for Debugging a Design

Introduction
This simple tutorial shows how to do the following:

 Create a Synplify Pro project for the wave generator design.

 Mark nets for debug in the Synplify Pro constraints file as well as VHDL source files.

 Synthesize the Synplify Pro project to create an EDIF netlist.

 Create a Vivado® project based on the Synplify Pro netlist.

 Use the Vivado IDE to setup and debug the design from the synthesized design using Synplify

Pro.

Step 1: Create a Synplify Pro Project
1. Launch Synplify Pro and select File > New.

2. Set File Type to Project File (Project) as highlighted in the following figure.

3. In the New File Name box, enter synplify_1.

4. Click OK.

Figure 31: Synplify Pro New Project Dialog Box

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=35

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 36
UG936 (v2018.2) June 6, 2018

5. If you get a dialog box asking you to create a non-existing directory, click OK.

Figure 32: Synplify Pro project Confirmation Dialog Box

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=36

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 37
UG936 (v2018.2) June 6, 2018

6. In the left panel of the Synplify Pro window, click Add File as shown in the following figure.

Figure 33: Adding Files to a Synplify Pro Project

7. In the Add Files to Project dialog box, change the Files of Type to HDL File. Navigate to

C:\Vivado_Debug\src\lab4, which shows all the VHDL source files needed for this lab. Select

the following three files by pressing the Ctrl key and clicking on them.

 debounce.vhd

 fsm.vhd

 sinegen_demo.vhd

8. Click Add.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=37

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 38
UG936 (v2018.2) June 6, 2018

Figure 34: Adding VHDL Source Files to the Synplify Pro Project

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=38

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 39
UG936 (v2018.2) June 6, 2018

10. In the same dialog box set Files of type to Constraints Files. This shows the synplify_1.sdc file.

Select the file and click Add as shown in the following figure.

Figure 35: Adding SDC Constraints File to the Synplify Pro Project

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=39

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 40
UG936 (v2018.2) June 6, 2018

11. In the same dialog box, set Files of type to FPGA Constraint Files. This shows the

synplify_1.fdc file. Select the file and click Add as shown in the following figure. Click OK.

Figure 36: Adding FPGA Constraints File to the Synplify Pro Project

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=40

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 41
UG936 (v2018.2) June 6, 2018

12. Now, you need to set the implementation options.

13. Click Implementation Options in the Synplify Pro window as shown in the following figure.

Figure 37: Opening Implementation Options in Synplify Pro

14. This brings up the Implementation Options dialog box as shown in the following figure. In the

Device tab, set Technology to Xilinx Kintex7, Part to XC7K325T, Package to FFG900 and Speed

to -2. Leave all the other options at their default values. Click OK.

Figure 38: Specifying Implementation Options in Synplify Pro

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=41

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 42
UG936 (v2018.2) June 6, 2018

15. You need to preserve the net names that you want to debug by putting attributes in the HDL files.

These attributes are already placed in the sinegen_demo.vhd, file of this tutorial. Open the

sinegen_demo.vhd file and inspect the lines shown.

Figure 39: Specifying Attributes to Preserve Net Names in Synplify

16. You also can specify the MARK_DEBUG attributes in the source HDL files to mark the signals for

debug, as shown in the code snippet from singen_demo.vhd file.

Figure 40: Add MARK_DEBUG Attribute in HDL File

17. The synplify_1.sdc file contains various kinds of constraints such as pin location, I/O standard,

and clock definition. The synplify_1.fdc file contains directives for the compiler. Here is where

the nets of interest to us that are marked for debug are located. The attribute and the nets selected

for debug are shown in the following figure.

Figure 41: Synplify Pro Constraints in FDC Files

In the above constraints, sinegen has been defined as a black box by using the syn_black_box

attribute. Second, the syn_no_prune attribute has been used so that the I/Os of this block are not

optimized away. Finally, two nets, sine[20:0] and sel[1:0], have been assigned the

MARK_DEBUG attribute such that these two nets should show up in the synthesized design in

Vivado IDE for further debugging. For further information on these attributes, please refer to the

Synplify Pro User Manual and Synplify Pro Reference Manual.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=42

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 43
UG936 (v2018.2) June 6, 2018

Step 2: Synthesize the Synplify Project
1. Before implementing the project, you need to set the name for the output netlist file. By default, the

name of the output netlist file is synplify_1.edf. To change the name of the output file, type the

following command at the Tcl command prompt:

%project -result_file "./rev_1/sinegen_demo.edf"

You will use this file in Vivado IDE.

2. With all the settings in place, click the Run button in the left panel of the Synplify Pro window to

start synthesizing the design.

Figure 42: Synthesize the Design in Synplify

3. During synthesis, status messages appear in the Tcl Script tab. Warning messages are expected, but

there should not be any Error messages. To see detailed messages, click the Messages tab in the

bottom left-hand corner of the Synplify Pro console.

4. When synthesis completes, the output netlist is written to the file: rev_1/sinegen_demo.edf

[Optional] To view the netlist select View > View Result File.

5. Click File > Save All to save the project, then click File > Exit.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=43

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 44
UG936 (v2018.2) June 6, 2018

Step 3: Create DCPs for the Black Box Created in Synplify Pro
The black box, sinegen, created in the Synplify Pro project, contains the Direct Digital Synthesizer IP.

You need to create a synthesized design for this block. To do this, create an RTL type project in Vivado

IDE by following the steps outlined below.

1. Launch Vivado IDE.

2. Click Create Project. This opens up the New Project wizard. Click Next.

3. Under Project Name, set the project name to proj_synplify_netlist. Click Next.

4. Under Project Type, select RTL Project. Click Next.

5. Under Add Sources, click Add Files, navigate to the Vivado_Debug/src/lab4 folder and select

the sinegen.vhd file. Set Target Language to VHDL. Ensure that Copy sources into project box

is selected. Click Next.

6. Click Add Files, navigate to the Vivado_Debug/src/lab4 folder and select the

sine_high.xci, sine_low.xci, and sine_mid.xci files. Click Next.

7. Under Default Parts, select Boards and then select the Kintex-7 KC705 Evaluation Platform and

correct version for your hardware. Click Next.

8. Under New Project Summary, ensure that all the settings are correct. Click Finish.

9. Once the project has been created, in Vivado Flow Navigator, under the Project Manager folder,

click Settings. In the dialog box, in the left panel, click Synthesis. From the pull-down menu on the

right panel, set -flatten_hierarchy to none. Click OK.

10. In Vivado IDE Flow Navigator, under Synthesis Folder, click Run Synthesis.

11. When synthesis completes the Synthesis Completed dialog box appears. Select Open Synthesized

Design and click OK.

12. Click File > Exit in Vivado IDE. When the OK to exit dialog box pops up, click OK.

Step 4: Create a Post Synthesis Project in Vivado IDE
1. Launch Vivado IDE.

2. Click Create Project. This opens up the New Project wizard. Click Next.

3. Set the Project Name to proj_synplify. Click Next.

4. Under Project Type, select Post-synthesis Project. Click Next.

5. Under Add Netlist Sources, click Add Files, navigate to the Vivado_Debug/synopsys/rev_1

folder, and select sinegen_demo.edf. Click OK.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=44

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 45
UG936 (v2018.2) June 6, 2018

6. Add the netlist file created in the previous section. Click Add Files again, navigate to the

proj_synplify_netlist/proj_synplify_netlist.runs/synth1 folder and select the

following file:

o sinegen.dcp

Add the DCP files created for the sub-module IPs in the previous section. Click Add Directories

again, navigate to the

proj_synplify_netlist/proj_synplify_netlist.srcs/sources_1/ip folder and

select the following:

o sine_high

o sine_mid

o sine_low

Click OK in the Add Source Files dialog box. In the Add Netlist Sources dialog box ensure that

Copy Sources into Project is selected. Click Next.

7. Click Add Files, navigate to the Vivado_Debug/src folder, and select the

sinegen_demo_kc705.xdc file. This file has the appropriate constraints needed for this Vivado

project. Click OK in the Add Constraints File dialog box. In the Add Constraints (optional) dialog

box ensure that Copy Constraints into Project is selected. Click Next.

8. Under Default Part, select Boards and then select Kintex-7 KC705 Evaluation Platform and the

right version number for your hardware. Click Next.

9. Under New Project Summary, ensure that all the settings are correct and click Finish.

10. In the Sources window, ensure sinegen_demo.edf is selected as the top module.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=45

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 46
UG936 (v2018.2) June 6, 2018

Step 5: Add More Debug Nets to the Project
1. In Vivado IDE, in the Flow Navigator, select Open Synthesized Design from the Netlist Analysis

folder.

2. Select the Netlist tab in the Netlist window to expand Nets. Select the following nets for

debugging:

 GPIO_BUTTONS_c(2)

 sine (20)

After selecting all the specified nets, right-click the nets and click Mark Debug, as shown in the

following figure.

Figure 43: Mark Additional Signals for Debug

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=46

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 47
UG936 (v2018.2) June 6, 2018

3. You should be able to see all the nets that are marked for debug, as shown in the following figure.

Figure 44: Nets Added for Debug through the Synplify Pro Flow in Vivado IDE

Running the Set up Debug Wizard

1. Click the Set up Debug icon in the Debug window or select the Tools menu, and select Set up

Debug. The Set up Debug wizard opens.

Figure 45: Run the Set up Debug Wizard

2. Click through the wizard to create Vivado logic analyzer debug cores, keeping the default settings.

Note: In the Specify Nets to Debug dialog box, ensure that all the nets marked for debug have

the same clock domain.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=47

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 48
UG936 (v2018.2) June 6, 2018

Step 6: Implementing the Design and Generating the
Bitstream
1. In the Flow Navigator, under the Program and Debug drop-down list, click Generate Bitstream.

2. In the Save Project dialog box, click Save.

3. When the Bitstream generation finishes, the Bitstream Generation Completed dialog box pops-up

and Open Implemented Design is selected by default. Click OK.

4. If you get a dialog box asking to close the synthesized design before opening the implemented

design, click Yes.

5. Proceed to Lab 5: Using Vivado Logic Analyzer to Debug Hardware to complete the rest of this lab.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=48

Programming and Debugging www.xilinx.com 49
UG936 (v2018.2) June 6, 2018

Lab 5: Using Vivado Logic Analyzer to Debug
Hardware

Introduction
The final step in debugging is to connect to the hardware and debug your design using the Integrated

Logic Analyzer. Before continuing, make sure you have the KC705 hardware plugged into a machine.

In this step, you learn:

 How to debug the design using the Vivado® logic analyzer.

 How to use the currently supported Tcl commands to communicate with your target board

(KC705).

 How to discover and correct a circuit problem by identifying unintended behaviors of the push

button switch.

 Some useful techniques for triggering and capturing design data.

Step 1: Verifying Operation of the Sine Wave Generator
After doing some setup work, you will use Vivado logic analyzer to verify that the sine wave generator is

working correctly. Your two primary objectives are to verify that:

 All sine wave selections are correct.

 The selection logic works correctly.

Target Board and Server Set Up

Connecting to the target board remotely

If you plan to connect remotely, you need to make sure that the KC705 board is plugged into a

machine and you are running an hw_server application on that machine. If you plan to connect locally,

skip steps 1-5 below and go directly to the Connecting to the Target Board Locally section.

1. Connect the Digilent USB JTAG cable of your KC705 board to a USB port on a Windows system.

2. Ensure that the board is plugged in and powered on.

3. Power cycle the board to clear the device.

4. Turn DIP switch positions (pin 1 on SW13, De-bounce Enable) to the OFF position.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=49

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 50
UG936 (v2018.2) June 6, 2018

5. Assuming you are connecting your KC705 board to a 64-bit Windows machine and you will be

running the hw_server from the network instead of your local drive, open a cmd prompt and type

the following:

<Xilinx_Install>\Vivado\2018.x\bin\hw_server

Leave this cmd prompt open while the hw_server is running. Note the machine name that you are

using, you will use this later when opening a connection to this instance of the hw_server

application.

Connecting to the Target Board Locally

If you plan to connect locally, ensure that the KC705 board is plugged into a Windows machine and

then perform the following steps:

1. Connect the Digilent USB JTAG cable of your KC705 board to a USB port on a Windows system.

2. Ensure that the board is plugged in and powered on.

3. Power cycle the board to clear the device.

4. Turn DIP switch positions (pin 1 on SW13, De-bounce Enable) to the OFF position.

Using the Vivado Integrated Logic Analyzer

1. In the Flow Navigator, under Program and Debug, select Open Hardware Manager.

Figure 46: Open Hardware Manager

2. The Hardware Manager window opens. Click Open Target > Open New Target.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=50

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 51
UG936 (v2018.2) June 6, 2018

Figure 47: Connect to a Hardware Target

3. The Open New Hardware Target wizard opens. Click Next.

4. In the Hardware Server Settings page, type the name of the server (or select Local server if the

target is on the local machine) in the Connect to field. Click Next.

Figure 48: Hardware Server Settings

Note: Depending on your connection speed, this may take about 10 to 15 seconds.

5. If there is more than one target connected, you will see multiple entries in the Select Hardware

Target page. In this tutorial, there is only one target, as shown in the following figure. Click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=51

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 52
UG936 (v2018.2) June 6, 2018

Figure 49: Select Hardware Target

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=52

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 53
UG936 (v2018.2) June 6, 2018

6. In the Open Hardware Target Summary page, click Finish as shown in the following figure.

Figure 50: Hardware Target Summary

7. Wait for the connection to the hardware to complete. The dialog in following figure appears while

hardware is connecting.

Figure 51: Open Hardware Target

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=53

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 54
UG936 (v2018.2) June 6, 2018

After the connection to the hardware target is made, the Hardware window appears as in the

following figure.

Note: The Hardware tab in the Debug view shows the hardware target and XC7K325T device

detected in the JTAG chain.

Figure 52: Active Target Hardware

8. Next, program the XC7K325T device using the previously created .bit bitstream by right-clicking

the XC7K325T device and selecting Program Device as shown in the following figure.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=54

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 55
UG936 (v2018.2) June 6, 2018

Figure 53: Program Active Target Hardware

9. In the Program Device dialog box verify that the .bit and .ltx files are correct for the lab that

you are working on and click Program to program the device as shown in the following figure.

Figure 54: Select Bitstream File to Download for Lab 1

CAUTION! The file paths of the bitstream and debug probes to be programmed will be different

for different labs. Ensure that the relative paths are correct.

Note: Wait for the program device operation to complete. This may take few minutes.

10. Ensure that an ILA core was detected in the Hardware panel of the Debug view.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=55

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 56
UG936 (v2018.2) June 6, 2018

Figure 55: ILA Core Detection

11. The Integrated Logic Analyzer dashboard opens, as shown in the following figure.

Figure 56: Vivado Integrated Logic Analyzer window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=56

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 57
UG936 (v2018.2) June 6, 2018

Verifying Sine Wave Activity

12. In the Hardware window, click Run Trigger Immediate to trigger and capture data immediately as

shown in shown in the following figure.

Figure 57: Run Trigger Immediate Button

13. In the Waveform window, verify that there is activity on the 20-bit sine signal as shown in the

following figure.

Figure 58: Output Sine Wave Displayed in Digital Format

Displaying the Sine Wave

14. Right-click U_SINEGEN/sine[19:0] signals, and select Waveform Style > Analog as shown in the

following figure.

TIP: The waveform does not look like a sine wave. This is because you must change the radix

setting from Hex to Signed Decimal, as described in the following subsection.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=57

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 58
UG936 (v2018.2) June 6, 2018

Figure 59: Output Sine Wave Displayed in Analog Format - High Frequency 1

15. Right-click U_SINEGEN/sine[19:0] signals, and select Radix > Signed Decimal.

You should now be able to see the high frequency sine wave as shown in the following figure

instead of the square wave.

Figure 60: Output Sine Wave Displayed in Analog Format - High Frequency 2

Correcting Display of the Sine Wave

To view the mid, and low frequency output sine waves, perform the following steps:

16. Cycle the sine wave sequential circuit by pressing the GPIO_SW_E push button as shown in the

following figure.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=58

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 59
UG936 (v2018.2) June 6, 2018

Figure 61: Sine Wave Sequencer Push Button

17. Click Run Trigger Immediately again to see the new sine selected sine wave. You should see the

mid frequency as shown in the following figure. Notice that the sel signal also changed from 0 to 1

as expected.

Figure 62: Output Sine Wave Displayed in Analog Format - Mid Frequency

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=59

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 60
UG936 (v2018.2) June 6, 2018

18. Repeat step 17 and 18 to view other sine wave outputs.

Figure 63: Output Sine Wave Displayed in Analog Format - Low Frequency

Figure 64: Output Sine Wave Displayed in Analog Format - Mixed Frequency

Note: As you sequence through the sine wave selections, you may notice that the LEDs do not light

up in the expected order. You will debug this in the next section of this tutorial. For now, verify for

each LED selection, that the correct sine wave displays. Also, note that the signals in the

Waveform window have been re-arranged in the previous three figures.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=60

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 61
UG936 (v2018.2) June 6, 2018

Step 2: Debugging the Sine Wave Sequencer State Machine
(Optional)
As you corrected the sine wave display, the LEDs might not have lit up in sequence as you pressed the

Sine Wave Sequencer button. With each push of the button, there should be a single, cycle-wide pulse

on the GPIO_BUTTONS_re[1] signal. If there is more than one, the behavior of the LEDs becomes

irregular. In this section of the tutorial, use Vivado logic analyzer to probe the sine wave sequencer state

machine, and to view and repair the root cause of the problem.

Before starting the actual debug process, it is important to understand more about the sine wave

sequencer state machine.

Sine Wave Sequencer State Machine Overview

The sine wave sequencer state machine selects one of the four sine waves to be driven onto the sine

signal at the top-level of the design. The state machine has one input and one output. The following

figure shows the schematic elements of the state machine. Refer to this diagram as you read the

following description and as you perform the steps to view and repair the state machine glitch.

 The input is a scalar signal called “button”. When the button input equals “1”, the state machine

advances from one state to the next.

 The output is a 2-bit signal vector called “Y”, and it indicates which of the four sine wave

generators is selected.

The input signal button connects to the top-level signal GPIO_BUTTONS_re[1], which is a low-to-high

transition indicator on the Sine Wave Sequencer button. The output signal Y connects to the top-level

signal, sineSel, which selects the sine wave.

Figure 65: Sine Wave Sequencer Button Schematic

Viewing the State Machine Glitch

You cannot troubleshoot the issue identified above by connecting a debug probe to the GPIO_BUTTON

[1] input signal itself. The GPIO_BUTTON [1] input signal is a PAD signal that is not directly accessible

from the FPGA fabric. Instead, you must trigger on low-to-high transitions (rising edges) on the

GPIO_BUTTON_IBUF signal, which is connected to the output of the input buffer of the GPIO_BUTTON

[1] input signal.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=61

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 62
UG936 (v2018.2) June 6, 2018

As described earlier, the glitch reveals itself as multiple low-to-high transitions on the

GPIO_BUTTONS_1_IBUF signal, but it occurs intermittently. Because it could take several button presses

to detect it, you will now set up the Vivado logic analyzer tool to Repetitive Trigger Run Mode. This

setting makes it easier to repeat the button presses and look for the event in the Waveform viewer.

1. Open the Debug Probes window if not already open by selecting Window > Debug Probes from

the Vivado main menu.

2. In the ILA Core Properties window scroll down to the link marked To view editable ILA

Properties: Open ILA Dashboard and set the following:

a. Trigger Mode to BASIC_ONLY

b. Capture Mode to BASIC

c. Window Data Depth to 1024

d. Trigger position to 512

e. Press the + button in the Trigger Setup window and add probe GPIO_BUTTONS_IBUF_1.

Change the Value field to RX by selecting the value RX in the Value field, as shown in the

following figure.

Figure 66: Trigger Setup Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=62

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 63
UG936 (v2018.2) June 6, 2018

Figure 67: Setting Trigger Conditions

CAUTION! For different labs the GPIO_BUTTONS_IBUF may show up differently. This may show up as

two individual bits or two bits lumped together in a bus. Ensure that you are using bit 1 of this bus to

set up your trigger condition. For example in case of a two-bit bus, you will set the Value field in the

Compare Value dialog box to RX.

3. Select Enable Auto Re-trigger mode on the ILA debug core as shown below.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=63

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 64
UG936 (v2018.2) June 6, 2018

Figure 68: Enable Auto Re-trigger

CAUTION! The ILA properties window may look slightly different for different labs.

When you issue a Run Trigger or a Run Trigger Immediate command after setting the Auto

Retrigger mode, the ILA core does the following repetitively until you disable the Auto Retrigger

mode option.

o Arms the trigger.

o Waits for the trigger.

o Uploads and displays waveforms.

4. On the KC705 board, press the Sine Wave Sequencer button until you see multiple transitions on

the GPIO_BUTTONS_1_IBUF signal (this could take 10 or more tries). This is a visualization of the

glitch that occurs on the input. An example of the glitch is shown in the following two figures.

CAUTION! You may have to repeat the previous two steps repeatedly to see the glitch. Once

you can see the glitch, you may observe that the signal glitches are not at exactly the same

location as shown in the figure below.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=64

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 65
UG936 (v2018.2) June 6, 2018

Figure 69: GPIO_BUTTONS_BUF1 Signal Glitch

Figure 70: GPIO Buttons_1_re Signal Glitch magnified

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=65

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 66
UG936 (v2018.2) June 6, 2018

Fixing the Signal Glitch and Verifying the Correct State Machine Behavior

The multiple transition glitch or “bounce” occurs because the mechanical button is making and

breaking electrical contact just as you press it. To eliminate this signal bounce, a “de-bouncer” circuit is

required.

1. Enable the de-bouncer circuit by setting DIP switch position on the KC705 board (labeled De-

bounce Enable in Figure 1: KC705 Board Showing Key Components) to the ON or UP position.

2. Enable the Auto-Retrigger mode on the ILA debug core and click RunTrigger on the ILA core,

and:

o Ensure that you no longer see multiple transitions on the GPIO_BUTTON_re[1] signal on a

single press of the Sine Wave Sequencer button.

o Verify that the state machine is working correctly by ensuring that the sineSel signal

transitions from 00 to 01 to 10 to 11 and back to 00 with each successive button press.

Verifying the VIO Core Activity (Only applicable to Lab 3)

1. From the Program and Debug section in Flow Navigator, click Open Hardware Manager.

Figure 71: Open Hardware Manager

The Hardware Manager window opens.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=66

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 67
UG936 (v2018.2) June 6, 2018

2. Click Open a new hardware target.

Figure 72: Connect to a New Hardware Target

3. The Open New Hardware Target wizard opens. Click Next.

4. In the Hardware Server Settings page, type the name of the server (or select Local server if the

target is on the local machine) in the Connect to field.

5. Ensure that you are connected to the right target by selecting the target from the Hardware

Targets page. If there is only one target, that target is selected by default. Click Next.

6. In the Set Hardware Target Properties page, click Next.

7. In the Open Hardware Target Summary page, verify that all the information is correct, and click

Finish.

8. Program the device by selecting and right-clicking the device in the Sources window and then

selecting Program Device.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=67

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 68
UG936 (v2018.2) June 6, 2018

Figure 73: Program FPGA

9. In the Program Device dialog box, ensure that the bit file to be programmed is correct. Click OK.

Figure 74: Program Device with the sinegen_demo_inst_vio.bit File

10. After the FPGA device is programmed, you see the VIO and the ILA core in the Hardware window.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=68

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 69
UG936 (v2018.2) June 6, 2018

Figure 75: The ILA and VIO Cores in the Hardware Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=69

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 70
UG936 (v2018.2) June 6, 2018

You now have a debug dashboard for the ILA core as shown in the following figure.

Figure 76: ILA Core and VIO Core Dashboards

11. Click Run Trigger Immediate to capture the data immediately.

Figure 77: Run Trigger Immediate

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=70

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 71
UG936 (v2018.2) June 6, 2018

12. Make sure that there is activity on the sine [19:0] signal.

13. Select the sine signal in the Waveform window, right-click and select Waveform Style > Analog.

14. Select the sine signal in the Waveform window again, right-click and select Radix > Signed

Decimal. You should be able to see the sine wave in the Waveform window.

Figure 78: Sine Wave after Modifying the Properties of the sine [19:0] Signal

15. Instead of using the GPIO_SW push button to cycle through each different sine wave output

frequency, you are going to use the virtual “push_button_vio” toggle switch from the VIO core.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=71

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 72
UG936 (v2018.2) June 6, 2018

16. You can now customize the ILA dashboard options to include the VIO window. This allows you to

toggle the VIO output drivers and observe the impact on the ILA waveform window all in one

dashboard. Slide out the Dashboard Options window.

Figure 79: Invoking Dashboard Options

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=72

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 73
UG936 (v2018.2) June 6, 2018

17. Add the VIO window to the ILA dashboard by selecting hw_vio_1.

Figure 80: Dashboard Options Adding VIO

Note: The ILA dashboard now contains the VIO window as well.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=73

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 74
UG936 (v2018.2) June 6, 2018

18. Adjust the Trigger Setup – hw_ila_1 window and the hw_vio_1 window so that they are side by

side as shown in the following figure.

Figure 81: ILA Basic Trigger Window and VIO Window Adjustment

19. In the hw_vio_1 window, select the “+” button, and select all the probes under hw_vio_1.

20. Click OK.

Note: The initial values of all the probes.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=74

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 75
UG936 (v2018.2) June 6, 2018

Figure 82: VIO Add Probes Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=75

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 76
UG936 (v2018.2) June 6, 2018

21. Note the values on all probes in the hw_vio_1 window.

Figure 83: VIO Probes Added to hw_vio_1 Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=76

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 77
UG936 (v2018.2) June 6, 2018

22. Set the push_button_reset output probe by right-clicking push_button_reset and select Toggle

Button.

This will toggle the output driver from logic from ‘0’ to ‘1’ to ‘0’ as you click. It is similar to the

actual push button behavior, though there is no bouncing mechanical effect as with a real push

button switch.

Figure 84: Toggle the push_button_reset Signal

The Value field for push_button_reset is highlighted.

23. Click in the Value field to change its value to 1.

Figure 85: Toggle the Value of push_button_reset

24. Follow the step above to change the push_button_vio to Toggle button as well.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=77

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 78
UG936 (v2018.2) June 6, 2018

25. Set these two bits of the “sineSel” input probe by right-clicking PROBE_IN0[0] and PROBE_IN0[1]

and selecting LED.

Figure 86: Change sineSel to LED

26. In the Select LED Colors dialog box, pick the Low Value Color and the High Value Color of the

LEDs as you desire and click OK.

Figure 87: Pick the Low Value and High Value Color of the LEDs

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=78

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 79
UG936 (v2018.2) June 6, 2018

27. When finished, your VIO Probes window in the Hardware Manager should look similar to the

following figure.

Figure 88: Input and Output VIO Signals Displayed

28. To cycle through each different sine wave output frequency using the virtual “push_button_vio”

from the VIO core, perform the following simple steps:

a. Toggle the value of the “push_button_vio” output driver from 0 to 1 to 0 by clicking on the logic

displayed under the Value column. You will notice the sineSel LEDs changed accordingly – 0, 1,

2, 3, 0, etc…

Figure 89: Toggle push_button_reset

b. Click Run Trigger for hw_ila_1 to capture and display the selected sine wave signal from the

previous step.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=79

 Lab 5: Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 80
UG936 (v2018.2) June 6, 2018

Figure 90: Run Trigger for hw_ila_1

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=80

Programming and Debugging www.xilinx.com 81
UG936 (v2018.2) June 6, 2018

Lab 6: Using ECO Flow to Replace Debug Probes Post
Implementation

This simple tutorial shows you how to replace nets connected to an ILA core in a placed and routed

design checkpoint using the Vivado® Design Suite Engineering Change Order (ECO) flow.

TIP: To learn more about using the ECO flow, refer to the Debugging Designs Post

Implementation Chapter in the Vivado Design Suite User Guide: Programming and Debugging

(UG908).

1. Open the Vivado Design Suite, and select File > Open Checkpoint.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug908-vivado-programming-debugging.pdf;a=xDebuggingDesignsPostImplementation
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug908-vivado-programming-debugging.pdf;a=xDebuggingDesignsPostImplementation
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=81

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 82
UG936 (v2018.2) June 6, 2018

Figure 91: Opening a Checkpoint in Vivado IDE

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=82

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 83
UG936 (v2018.2) June 6, 2018

2. Open the routed checkpoint that you created in Lab 2: Using the HDL Instantiation Method for

Debugging a Design in Vivado.

Figure 92: Open Checkpoint Dialog Box

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=83

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 84
UG936 (v2018.2) June 6, 2018

Change the layout in the Vivado Design Suite toolbar dropdown to ECO.

Figure 93: Change Layout to ECO

Note: The Flow Navigator window now changes to ECO Navigator with a different set of

options.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=84

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 85
UG936 (v2018.2) June 6, 2018

Figure 94: ECO Navigator Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=85

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 86
UG936 (v2018.2) June 6, 2018

3. In the ECO Navigator window, click Replace Debug Probes to bring up the Replace Debug

Probes dialog box. Note the Debug Hub and ILA cores in the design.

Figure 95: Replace Debug Probes Dialog Box

IMPORTANT: Xilinx strongly recommends that you do not replace the clock nets associated with

ILA and Debug Hub cores.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=86

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 87
UG936 (v2018.2) June 6, 2018

4. In the Replace Debug Probes dialog box, highlight the probes whose nets you want to change. In

this lab we will replace the GPIO_BUTTONS_dly[0] net that is being probed.

5. Click the Edit Probes button to the right of the GPIO_BUTTONS_dly[0] probe net to bring up the

Replace Debug Probes dialog box.

Figure 96: Edit Probes Button

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=87

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 88
UG936 (v2018.2) June 6, 2018

6. In the Choose Nets dialog box, choose the U_DEBOUNCE_0/clear net to replace the existing

GPIO_BUTTONS_dly[0] probe net. Click OK.

Figure 97: Choose Nets

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=88

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 89
UG936 (v2018.2) June 6, 2018

7. Type for “*clear net” in the Name field and Click Find. Notice the U_DEBOUNCE_0 net in the Found nets

area. Select U_DEBOUNCE_0/clear net using the “->” arrow and click OK. The U_DEBOUNCE_0/clear

net to replaces the existing GPIO_BUTTONS_dly[0] probe net.

Figure 98: Choose Nets – Clear

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=89

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 90
UG936 (v2018.2) June 6, 2018

Figure 99: Choose Nets - Copy

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=90

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 91
UG936 (v2018.2) June 6, 2018

8. Now click OK in the Replace Debug Probes dialog.

Figure 100: Finish Replace Debug Probes

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=91

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 92
UG936 (v2018.2) June 6, 2018

IMPORTANT: Check the Tcl Console to ensure that there are no Warnings/Errors.

Figure 101: Checking the Tcl Console for Warnings/Errors

Figure 102: Route Design Messages

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=92

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 93
UG936 (v2018.2) June 6, 2018

9. Save your modifications to a new checkpoint. Use the Save Checkpoint As option in the ECO

Navigator to bring up the Save Checkpoint As dialog box. Specify a file name for the .dcp file and

click OK.

Figure 103: Save Checkpoint As Dialog Box

10. Click Write Debug Probes in the ECO Navigator. When the Write Debug Probes dialog appears,

click OK to generate a new .ltx file for the debug probes.

Figure 104: Write Debug Probes Dialog Box

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=93

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 94
UG936 (v2018.2) June 6, 2018

11. When the Generate Bitstream dialog appears, change the bit file name to

project_sinegen_demo_routed_debug_changes.bit in the Bit File field and click OK to

generate a new .bit file that reflects the debug probe changes.

Figure 105: Generate Bitstream Dialog Box

12. Connect to the Vivado Hardware Manager by selecting Open Hardware Manager in the ECO

Navigator.

13. Connect to the local hardware server by following the steps in the Target Board and Server Set Up

section in Lab 5: Using Vivado Logic Analyzer to Debug Hardware.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=94

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 95
UG936 (v2018.2) June 6, 2018

Program the device using the .bit file and .ltx files that you created in the previous steps.

Figure 106: Program Device Dialog Box

14. Select Window > Debug Probes from the Vivado Design Suite toolbar. Ensure that the probes that

were replaced in step 8 and 9 above are reflected in the probes associated with hw_ila_1.

Figure 107: Verifying Debug Probes

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=95

 Lab 6: Using ECO Flow to Replace Debug Probes Post

Implementation

Programming and Debugging www.xilinx.com 96
UG936 (v2018.2) June 6, 2018

15. Run the Trigger on the ILA. Ensure the probes that were replaced in step 8 and 9 above are reflected

in the Waveform window as well.

Figure 108: Running the Trigger on the ILA

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=96

Programming and Debugging www.xilinx.com 97
UG936 (v2018.2) June 6, 2018

Lab 7: Debugging Designs Using Incremental Compile Flow

Introduction
This lab introduces the Vivado® Incremental Compile Flow to add/edit/delete debug cores to an earlier

implementation of the design.

Procedure
This lab consists of five generalized steps followed by general instructions and supplementary detailed

steps that allow you to make choices based on your skill level as you progress through the lab.

If you need help completing a general instruction, go to the detailed steps below it, or if you are ready,

simply skip the step-by-step directions and move on to the next general instruction.

The lab has five primary steps as follows:

Step 1: Opening the Example Design and Adding a Debug Core

Step 2: Compiling the Reference Design

Step 3: Create New Runs Step

Step 4: Making Incremental Debug Changes

Step 5: Running Incremental Compile

Step 1: Opening the Example Design and Adding a Debug
Core
1. Start Vivado IDE

Load Vivado IDE by doing one of the following:

 Double-click the Vivado IDE icon on the Windows desktop

 Type vivado in a command terminal.

 From the Getting Started page, click Open Example Project.

2. In the Open Example Project dialog box, click Next.

3. Select the CPU (Synthesized) design template, and click Next.

4. In the Project Name dialog box, specify the following:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=97

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 98
UG936 (v2018.2) June 6, 2018

 Project name: project_cpu_incremental

 Project location: <Project_Dir>

Click Next.

5. In the Default Part screen, select xc7k70tfbg676-2 and click Next.

6. The New Project Summary screen appears, displaying project details. Reviewed these and click

Finish

7. When Vivado IDE opens with the default view, open the Synthesized design

8. In the Netlist window, select the set of signals specified below in the cpuEngine hierarchy and

apply the MARK_DEBUG property by right-clicking and selecting Mark Debug from the dialog.

cpuEngine/dcqmem_dat_qmem[*],

cpuEngine/dcpu_dat_qmem[*],

cpuEngine/dcqmem_adr_qmem[*],

cpuEngine/du_dsr[*],

cpuEngine/dvr0__0[*],

cpuEngine/du_dsr[*],

cpuEngine/dcqmem_sel_qmem[*]

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=98

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 99
UG936 (v2018.2) June 6, 2018

Figure 109: Set MARK_DEBUG Property

Alternatively use can use the Tcl command below to set the MARK_DEBUG property on the signals

specified.

set_property mark_debug true [get_nets [list {cpuEngine/dcqmem_dat_qmem[*]}

{cpuEngine/dcpu_dat_qmem[*]} {cpuEngine/dcqmem_adr_qmem[*]}

{cpuEngine/du_dsr[*]} {cpuEngine/dvr0__0[*]} {cpuEngine/du_dsr[*]}

{cpuEngine/dcqmem_sel_qmem[*]}]]

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=99

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 100
UG936 (v2018.2) June 6, 2018

9. In the Flow Navigator, click Set Up Debug to invoke the Set Up Debug wizard.

Figure 110: Setup Debug from Flow Navigator

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=100

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 101
UG936 (v2018.2) June 6, 2018

10. When the Set Up Debug Wizard appears, click Next.

Figure 111: Set Up Debug Nets to Debug

11. When ILA Core Options screen appears, click Next again.

12. When Set Up Debug Summary screen appears, ensure that 1 debug core is created and click

Finish.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=101

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 102
UG936 (v2018.2) June 6, 2018

13. Check the Debug widow to ensure that u_ila_0 core has been inserted into the design.

Figure 112: Check u_ila_0 Core

14. Save the new debug XDC commands by selecting File > Save Constraints or clicking the Save

Constraints button.

Step 2: Compiling the Reference Design
The following are the steps to run implementation on the reference design.

1. From the Flow Navigator, select Run Implementation.

2. After implementation finishes, the Implementation Complete dialog box opens. Click Cancel.

3. In a project-based design, the Vivado Design Suite saves intermediate implementation results as

design checkpoints in the implementation runs directory. You will use one of the saved design

checkpoints from the implementation in the incremental compile flow.

TIP: When you re-run implementation, the previous results will be deleted. Save the intermediate

implementation results to a new directory or create a new implementation run for your

incremental compile to preserve the reference implementation run directory.

4. In the Design Runs window, right click impl_1 and select Open Run Directory from the popup

menu. This opens the run directory in a file browser as seen in the figure below. The run directory

contains the routed checkpoint (top_routed.dcp) to be used later for the incremental compile

flow. The location of the implementation run directory is a property of the run.

5. Get the location of the current run directory in the Tcl Console by typing:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=102

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 103
UG936 (v2018.2) June 6, 2018

get_property DIRECTORY [current_run]

This returns the path to the current run directory that contains the design checkpoint. You can use

this Tcl command, and the DIRECTORY property, to locate the DCP files needed for the incremental

compile flow.

Step 3: Create New Runs
In this step, you define new synthesis and implementation runs to preserve the results of the current

runs. Then you make debug related changes to the design and rerun synthesis and implementation. If

you do not create new runs, Vivado overwrites the current results.

1. From the Vivado tool bar, select Flow > Create Runs to invoke the Create New Runs wizard.

2. In the Create New Runs screen, click Next.

3. The Configure Implementation Runs screen opens, as shown in the figure below. Select the Make

Active check box, and click Next.

Figure 113: Configure Implementation Runs

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=103

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 104
UG936 (v2018.2) June 6, 2018

4. From the Launch Options window, select Do not launch now and click Next.

Figure 114: Launch Options

5. In the Create New Runs Summary screen, click Finish to create the new runs.

The Design Runs window displays the new active runs in bold.

Figure 115: New Design Runs

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=104

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 105
UG936 (v2018.2) June 6, 2018

Step 4: Making Incremental Debug Changes
In this step, in order to add/delete/edit debug cores, you need to reopen the synthesized netlist. Make

debug related changes to the design using the Set Up Debug wizard.

1. If you have closed the synthesized netlist, go back to the synthesized design using the Flow

Navigator.

2. For this tutorial, assume that you now need to debug some other nets in addition to the ones

already being debugged. However, you want to reuse the previous place and route results. So now,

you will debug the nets fftEngine/fifo_out[*].

3. Apply the MARK_DEBUG property to this bus in the netlist window.

Figure 116: Netlist fifo_out

4. Click Set Up Debug to invoke the Set Up Debug wizard in the Flow Navigator.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=105

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 106
UG936 (v2018.2) June 6, 2018

5. In the Existing Debug Nets tab, select Continue debugging 110 nets connected to existing

debug cores.

Figure 117: Existing Debug Nets

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=106

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 107
UG936 (v2018.2) June 6, 2018

6. Click Next to debug the new unassigned debug nets.

Figure 118: Set Up Debug Additional Debug Nets

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=107

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 108
UG936 (v2018.2) June 6, 2018

7. Click Next and ensure the new nets are in the list of Nets to Debug.

Figure 119: Viewing Additional Debug Nets

8. Click Next and ensure that two debug cores are created and click Finish.

9. Save the new debug XDC commands by clicking the Save Constraints button or selecting File >

Save Constraints from the main Vivado toolbar.

Step 5: Running Incremental Compile
In the previous steps, you have updated the design with debug changes. You could run implementation

on the new netlist, to place and route the design and work to meet the timing requirements. However,

with only minor changes between this iteration and the last, the incremental compile flow lets you reuse

the bulk of your prior debug, placement and routing efforts. This can greatly reduce the time it takes to

meet timing on design iterations. For more information, refer to Vivado Design Suite User Guide:

Implementation (UG904).

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=108

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 109
UG936 (v2018.2) June 6, 2018

1. Start by defining the design checkpoint (DCP) file to use as the reference design for the incremental

compile flow. This is the design from which the Vivado Design Suite draws placement and routing

data.

2. In the Design Runs window, right-click the impl_2 run and select Set Incremental Compile from

the popup menu. The Set Incremental Compile dialog box opens.

3. Click the Browse button in the Set Incremental Compile dialog box, and browse to the

./project_cpu_incremental.runs/impl_1 directory.

4. Select top_routed.dcp as the incremental compile checkpoint.

Figure 120: Set Incremental Compile

5. Click OK. This information is stored in the INCREMENTAL_CHECKPOINT property of the selected run.

Setting this property tells the Vivado Design Suite to run the incremental compile flow during

implementation.

6. You can check this property on the current run using the following Tcl command:

get_property INCREMENTAL_CHECKPOINT [current_run]

This returns the full path to the top_routed.dcp checkpoint.

TIP: To disable Incremental Compile for the current run, clear the INCREMENTAL_CHECKPOINT

property. This can be done using the Set Incremental Compile dialog box, or by editing the

property directly through the Properties window of the design run, or through the reset_property

command.

7. From the Flow Navigator, select Run Implementation.

This runs implementation on the current run, using the top_routed.dcp file as the reference

design for the incremental compile flow. When the run is finished, the Implementation Completed

dialog box opens.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=109

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 110
UG936 (v2018.2) June 6, 2018

8. Select Open Implemented Design and click OK. As shown in the following figure, the Design Runs

window shows the elapsed time for implementation run impl_2 versus impl_1.

Figure 121: Design Runs

Note: This is an extremely small design. The advantages of the incremental compile flow are

greater and significant with larger, more complex designs.

9. Select the Reports tab in the Results window area and under Place Design, double-click

Incremental Reuse Report as shown in the following figure.

Figure 122: Opening Incremental Reuse Report

The Incremental Reuse Report opens in the Vivado IDE text editor. This report shows the percentage

of reused Cells, Ports, and Nets. A higher percentage indicates more effective reuse of placement

and routing from the incremental checkpoint.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=110

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 111
UG936 (v2018.2) June 6, 2018

Figure 123: Incremental Reuse Report Sample

In the report, fully reused nets indicate that the entire routing of the nets is reused from the

reference design. Partially reused nets indicate that some of the routing of the nets reuses routing

from the reference design. Some segments re-route due to changed cells, changed cell placements,

or both. Non-reused nets indicate that the net in the current design was not matched in the

reference design.

Conclusion
This concludes the lab. You can close the current project and exit the Vivado IDE.

In this lab, you learned how to run the Incremental Compile Debug flow, using a checkpoint from a

previously implemented design. You inserted a new debug core using the Set Up Debug wizard on the

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=111

 Lab 7: Debugging Designs Using Incremental Compile Flow

Programming and Debugging www.xilinx.com 112
UG936 (v2018.2) June 6, 2018

synthesized netlist. You examined the similarity between a reference design checkpoint and the current

design by examining the Incremental Reuse Report.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=112

Programming and Debugging www.xilinx.com 113
UG936 (v2018.2) June 6, 2018

Lab 8: Using Vivado Serial Analyzer to Debug Serial
Links

Introduction
The Serial I/O analyzer is used to interact with IBERT debug IP cores contained in a design. It is used to

debug and verify issues in high speed serial I/O links.

The Serial I/O Analyzer has several benefits as listed below:

 Tight integration with Vivado® IDE.

 Ability to script during netlist customization/generation and serial hardware debug.

 Common interface with the Vivado Integrated Logic Analyzer.

The customizable LogiCORE™ IP Integrated Bit Error Ratio Tester (IBERT) core for 7 series FPGA GTX

transceivers is designed for evaluating and monitoring the GTX transceivers. This core includes pattern

generators and checkers that are implemented in FPGA logic, and provides access to ports and the

dynamic reconfiguration port attributes of the GTX transceivers. Communication logic is also included

to allow the design to be run time accessible through JTAG.

In the course of this tutorial, you:

 Create, customize, and generate an Integrated Bit Error Ratio Tester (IBERT) core design in the

Vivado Integrated Design Suite.

 Interact with the design using Serial I/O Analyzer. This includes connecting to the target KC705

board, configuring the device, and interacting with the IBERT/Transceiver IP cores.

 Perform a sweep test to optimize your transceiver channel and to plot data using the IBERT

sweep plot GUI feature.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=113

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 114
UG936 (v2018.2) June 6, 2018

Design Description
You can customize the IBERT core and use it to evaluate and monitor the functionality of transceivers

for a variety of Xilinx devices. The focus for this tutorial is on Kintex®-7 GTX transceivers. Accordingly,

the KC705 target board is used for this tutorial.

The following figure shows a block diagram of the interface between the IBERT Kintex-7 GTX core

interfaces with Kintex-7 transceivers.

 DRP Interface and GTX Port Registers: IBERT provides you with the flexibility to change GTX

transceiver ports and attributes. Dynamic reconfiguration port (DRP) logic is included, which

allows the runtime software to monitor and change any attribute in any of the GTX transceivers

included in the IBERT core. When applicable, readable and writable registers are also included.

These are connected to the ports of the GTX transceiver. All are accessible at run time using the

Vivado logic analyzer.

 Pattern Generator: Each GTX transceiver enabled in the IBERT design has both a pattern

generator and a pattern checker. The pattern generator sends data out through the transmitter.

 Error Detector: Each GTX transceiver enabled in the IBERT design has both a pattern generator

and a pattern checker. The pattern checker takes the data coming in through the receiver and

checks it against an internally generated pattern.

Figure 124: IBERT Design Flow

JTAG

BSCAN

DRP

Interface

Pattern

Generator

Error

Detector

GTX Port

Detector

DRP

Ports

Tx Data

Rx Data

Kintex 7 GTX

Transceiver

TxN/TxP

RxN/RxP

External Serial

Loopback via

SMA Cables

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=114

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 115
UG936 (v2018.2) June 6, 2018

Step 1: Creating, Customizing, and Generating an IBERT
Design
To create a project, use the New Project wizard to name the project, to add RTL source files and

constraints, and to specify the target device.

1. Invoke the Vivado IDE.

2. In the Quick Start screen, click Create Project to start the New Project wizard, and click Next.

3. In the Project Name page, name the new project ibert_tutorial and provide the project location

(C:/ibert_tutorial). Ensure that Create Project Subdirectory is selected. Click Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources page, click Next.

6. In the Add Existing IP page, click Next.

7. In the Add Constraints page, click Next.

8. In the Default Part page, select Boards and then select Kintex-7 KC705 Evaluation Platform.

Click Next.

9. Review the New Project Summary page. Verify that the data appears as expected, per the steps

above. Click Finish.

Note: It might take a moment for the project to initialize.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=115

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 116
UG936 (v2018.2) June 6, 2018

Step 2: Adding an IBERT core to the Vivado Project
1. In the Flow Navigator click IP Catalog.

The IP Catalog opens.

Figure 125: Opening the Vivado IP Catalog

2. In the search field of the IP Catalog type IBERT, to display the IBERT 7 Series GTX IP.

Figure 126: Instantiating the IBERT IP from the Vivado IP Catalog

3. Double-click IBERT 7 Series GTX IP. This brings up the customization GUI for the IBERT.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=116

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 117
UG936 (v2018.2) June 6, 2018

4. In the Customize IP dialog box, choose the following options in the Protocol Definition tab:

a. Type the name of the component in the Component Name field. In this case, leave the name as

the default name, ibert_7series_gtx_0.

b. Ensure that the Silicon Version is selected as General ES/Production.

c. Ensure that the Number of Protocols option is set to 1.

d. Change the LineRate (Gbps) to 8.

e. Change DataWidth to 40.

f. Change Refclk (MHz) to 125.

g. Ensure that the Quad Count is set to 2.

h. Ensure Quad PLL box is selected.

Figure 127: Setting the Protocol Definition on the IBERT Core

5. Under the Protocol Selection tab, update the following selections:

a. For GTX Location QUAD_117, in the Protocol Selected column, click the pull-down menu and

select Custom 1 / 8 Gbps. This should automatically populate Refclk Selection to

MGTREFCLK0 117 and TXUSRCLK Source to Channel 0.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=117

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 118
UG936 (v2018.2) June 6, 2018

b. For GTX Location QUAD_118, do the following:

i. In the Protocol Selected column, click the pull-down menu and select Custom 1 / 8

Gbps.

ii. In the Refclk Selection column, change the value to MGTREFCLK0 117.

iii. In the TXUSRCLK Source column, change the value to Channel 0.

Figure 128: Setting the Protocol Selection on the IBERT Core

6. Click the Clock Settings tab and make the following changes for both QUAD_117 and QUAD_118:

a. Leave the Source column at its default value of External.

b. Change the I/O Standard column to DIFF SSTL15.

c. Change the P Package Pin to AD12.

d. Change the N Package Pin to AD11.

e. Leave the Frequency(MHz) at its default value of 200.00.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=118

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 119
UG936 (v2018.2) June 6, 2018

Figure 129: Specifying Clock Settings for the IBERT Core

7. Click the Summary tab and ensure that the content matches the following figure, then click OK.

Figure 130: IBERT Core Summary Page

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=119

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 120
UG936 (v2018.2) June 6, 2018

8. When the Generate Output Products dialog box opens, click Generate.

Figure 131: Generate Output Products

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=120

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 121
UG936 (v2018.2) June 6, 2018

9. In the Sources window, right-click the IP, and select Open IP Example Design.

Figure 132: Open Example IP Design Menu Item

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=121

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 122
UG936 (v2018.2) June 6, 2018

10. In the Open IP Example Design dialog box, and specify the location of your project directory.

Ensure that the Overwrite existing example project is selected and click OK.

Note: This opens a new instance of Vivado IDE with the new example design opened.

Figure 133: Open IP Example Design Dialog Box

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=122

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 123
UG936 (v2018.2) June 6, 2018

Step 3: Synthesize, Implement and Generate Bitstream for
the IBERT design
1. In the newly opened instance of Vivado IDE, click Generate Bitstream in the Flow Navigator.

When the No Implementation Results Available dialog box appears. Click Yes.

Figure 134: No Implementation Results Available Dialog Box

When the bitstream generation is complete, the Bitstream Generation Completed dialog box

opens.

2. Select Open Hardware Manager, and click OK.

Figure 135: Bitstream Generation Completed Dialog Box

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=123

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 124
UG936 (v2018.2) June 6, 2018

3. The Hardware Manager window appears as shown in the following figure.

Figure 136: Hardware Manager Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=124

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 125
UG936 (v2018.2) June 6, 2018

Step 4: Interact with the IBERT core using Serial I/O Analyzer
In this tutorial step, you connect to the KC705 target board, program the bitstream created in the

previous step, and then use the Serial I/O Analyzer to interact with the IBERT design that you created in

Step 1. You perform some analysis using various input patterns and loopback modes, while observing

the bit error count.

Figure 137: Open a New Hardware Target

1. Click Open New Target. When the Open Hardware Target wizard opens, click Next.

Figure 138: Open New Hardware Target Wizard

2. In the Connect to field, choose Local server. Click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=125

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 126
UG936 (v2018.2) June 6, 2018

Figure 139: Vivado CSE Server Name Page

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=126

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 127
UG936 (v2018.2) June 6, 2018

3. In the Select Hardware Target page, and click Next.

There is only one target board in this case to connect to, so that the default is selected.

Figure 140: Select Hardware Target Page

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=127

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 128
UG936 (v2018.2) June 6, 2018

4. In the Open Hardware Target Summary page, review the options that you selected. Click Finish.

Figure 141: Open Hardware Target Summary Dialog Box

5. The Hardware window in Vivado IDE should show the status of the target FPGA device on the

KC705 board.

Figure 142: Hardware Window Showing the XC7K325T Device on the KC705 Board

6. Select XC7K325T_0(0) in the Hardware window, right-click and select Program Device.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=128

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 129
UG936 (v2018.2) June 6, 2018

Figure 143: Program Target Device

7. The Program Device dialog box opens. Make sure that the correct .bit file is selected, and click

Program.

Figure 144: Program Device Dialog Box with .bit File

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=129

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 130
UG936 (v2018.2) June 6, 2018

8. The Hardware window now shows the IBERT IP that you customized and implemented from the

previous steps. It contains two QUADS each of which has four GTX transceivers. These components

of the IBERT were detected while scanning the device after downloading the bitstream. If you do not

see the QUADS then select the XC7K325 device, right-click and select Refresh Device.

Figure 145: The Hardware Window Showing the QUADS after Device Programming

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=130

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 131
UG936 (v2018.2) June 6, 2018

9. Next, create links for all eight transceivers. Vivado Serial I/O analyzer is a link-based analyzer, which

allows users to link between any transmitter and receiver GTs within the IBERT design. For this

tutorial, simply link the TX and RX of the same channel. To create a link, right-click the IBERT Core

in the Hardware window and click Create Links.

Figure 146: Create Links

The Create Links dialog box opens.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=131

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 132
UG936 (v2018.2) June 6, 2018

10. Ensure the first transceiver pairs (MGT_X0Y8/TX and MGT_X0Y8/RX) are selected.

Figure 147: Selecting the Transceiver Pairs for Creating New Links

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=132

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 133
UG936 (v2018.2) June 6, 2018

11. Click the “+” button add a new link. In the Link group description field, type Link Group SMA.

Select the Internal Loopback check box.

Figure 148: Create Links Dialog Box

For the first link group, call this Link Group SMA as this is the only transceiver channel that is linked

through the SMA cables. The new link shows up in the Links window.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=133

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 134
UG936 (v2018.2) June 6, 2018

Figure 149: Create Link Groups for Other Transceiver Pairs

12. Click Create Link again to create link groups for the rest of the transceiver pairs. To do this ensure

that the transceiver pairs are selected, and click the + sign icon (add new link) repeatedly, until all

the links have been added to the new link group called Link Group Internal Loopback. Click OK.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=134

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 135
UG936 (v2018.2) June 6, 2018

Figure 150: Create Link Dialog Box to Create the Second Link Group

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=135

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 136
UG936 (v2018.2) June 6, 2018

13. After the links have been created, they are added to the Links window as shown.

Figure 151: Links Window after Link Groups are Created

The status of the links indicate an 8.0 Gbps line rate.

For more information about the different columns of the Links windows, see the Vivado Design

Suite User Guide: Programming and Debugging (UG908).

14. Change the GT properties of the rest of the transceivers as described above.

15. Next, create a 2D scan. Click Create Scan in the Links window.

Figure 152: Creating a 2D Scan for Link 1

The Create Scan dialog box opens. In this dialog box, you can change the various scan properties.

In this case, leave everything to its default value and click OK. For more information on the scan

properties, see Vivado Design Suite User Guide: Programming and Debugging (UG908).

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=136

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 137
UG936 (v2018.2) June 6, 2018

Figure 153: The Create Scan Dialog Box

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=137

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 138
UG936 (v2018.2) June 6, 2018

The Scan Plot window opens as shown in the following figure.

Figure 154: 2D Scan Plot

The 2D Scan Plot is a heat map of the BER value.

You can also perform a Sweep test on the links that you created earlier.

16. In the Links window, highlight Link 0 under the Link called Link Group SMA, right-click and select

Create Sweep.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=138

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 139
UG936 (v2018.2) June 6, 2018

Figure 155: Create a Sweep Test

17. The Create Sweep dialog box opens, as shown below. Various properties for the Sweep test can be

changed in this dialog box. Leave all the values to its default state and click OK.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=139

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 140
UG936 (v2018.2) June 6, 2018

Figure 156: Create Sweep Dialog Box

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=140

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 141
UG936 (v2018.2) June 6, 2018

Because here are four different Sweep Properties and each of these properties has three different

values (as seen in the Values to Sweep column), a total number of 81 sweep tests are carried out.

The Scans window shows the results of all the scans that have been done for the selected link.

CAUTION! Since there are 81 scans to be done, it could be a few minutes before all the scans

are complete.

Figure 157: Sweep Test Results in the Scans Window

To see the results of any of the scans that have been performed, highlight the scan, right-click, and

select Display Scan Plots.

Figure 158: Displaying Scan Plots

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=141

 Lab 8: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 142
UG936 (v2018.2) June 6, 2018

The Scan Plots window opens showing the details of the scan performed.

Figure 159: Analyzing the Results of Individual Scans

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=142

Programming and Debugging www.xilinx.com 143
UG936 (v2018.2) June 6, 2018

Lab 9: Using Vivado ILA Core to Debug JTAG-AXI
Transactions

Introduction
The purpose of this tutorial is to provide a very quick and easy to reproduce introduction to inserting an

ILA core into the JTAG to AXI Master IP core example design, and using the ILA's advanced trigger and

capture capabilities.

What is the JTAG to AXI Master IP core?

The LogiCORE™ IP JTAG-AXI core is a customizable core that can generate AXI transactions and drive

AXI signals internal to FPGA at run-time. This supports all memory-mapped AXI interfaces (except AXI4-

Stream) and Lite protocol and can be selected using a parameter. The width of AXI data bus is

customizable. This IP can drive any AXI4-Lite or Memory Mapped Slave directly. This can also be

connected as master to the interconnect. Run-time interaction with this core requires the use of the

Vivado® logic analyzer feature.

Key Features

 AXI4 master interface

 Option to select AXI4-Memory Mapped and AXI4-Lite interfaces

 User controllable AXI read and write enable

 User Selectable AXI datawidth : 32 and 64

 User Selectable AXI ID width up to four bits

 Vivado logic analyzer Tcl Console interface to interact with hardware

Additional Documentation

LogiCORE IP JTAG AXI Master v1.0 Product Guide (AXI) (PG174) contains more information the JTAG to

AXI Master IP core.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=jtag_axi;v=latest;d=pg174-jtag-axi.pdf
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=143

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 144
UG936 (v2018.2) June 6, 2018

Design Description
This section has three steps as follows:

1. Opening the JTAG to AXI Master IP Example Design project and adding MARK_DEBUG to the AXI

interface connection. Inserting an ILA core into the design and configuring it for advanced trigger is

also included in this step.

2. Programming the KC705 board and interacting with the JTAG to AXI Master IP core.

3. Using the ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction.

Step 1: Opening the JTAG to AXI Master IP Example Design
and Configuring the AXI Interface Debug Connections
To create a project, use the New Project wizard to name the project, add RTL source files and

constraints, and specify the target device.

1. Invoke the Vivado IDE.

2. In the Quick Start tab, click Create Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project jtag_2_axi_tutorial and provide the project

location (C:/jtag_2_axi_tutorial). Ensure that Create Project Subdirectory is selected. Click

Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources page, click Next.

6. In the Add Constraints page, click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=144

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 145
UG936 (v2018.2) June 6, 2018

7. In the Default Part page, shown in the following figure, choose Boards and choose the Kintex-7

KC705 Evaluation Platform. Click Next.

Figure 160: Choosing the Kintex-7 KC705 Evaluation Platform Board

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=145

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 146
UG936 (v2018.2) June 6, 2018

8. In the New Project Summary page, shown in the following figure, click Finish.

Figure 161: New Project Summary

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=146

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 147
UG936 (v2018.2) June 6, 2018

9. In the leftmost panel of the Flow Navigator under Project Manager, click IP Catalog.

Figure 162: IP Catalog from Flow Navigator

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=147

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 148
UG936 (v2018.2) June 6, 2018

10. In the Search field on the upper left of the IP Catalog tab, type in JTAG to AXI.

Note: The JTAG to AXI Master core shows up under the Debug & Verification > Debug

category.

Figure 163: JTAG to AXI Master IP Core

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=148

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 149
UG936 (v2018.2) June 6, 2018

11. Double-click JTAG to AXI Master core. The Customization dialog of the core appears. Accept the

default core settings by clicking OK.

Figure 164: JTAG to AXI Master Customization Dialog

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=149

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 150
UG936 (v2018.2) June 6, 2018

12. In the Generate Output Products dialog box, click Generate.

Figure 165: Generate Output Products Dialog Box

13. The jtag_axi_0 IP core is inserted into the design.

Figure 166: Generated JTAG to AXI Master IP in the Design

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=150

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 151
UG936 (v2018.2) June 6, 2018

14. Right-click jtag_axi_0 and select Open IP Example Design.

Figure 167: Open IP Example Design Menu Item

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=151

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 152
UG936 (v2018.2) June 6, 2018

15. In the Open IP Example Design dialog, ensure that Overwrite existing example project is

selected. Click OK.

Figure 168: Open IP Example Design Dialog Box

16. Open the example_jtag_axi_0.v file and notice that the jtag_axi_0 module is connected to an

axi_bram_ctrl_0 (AXI-BRAM block memory) module.

17. In the example_jtag_axi_0.v file, add the following string to the beginning of the wire declaration for

each axi_* signal from lines 72-108:

(* mark_debug *)

Note: Do not put mark_debug on the axi_aclk signal since this might result in Vivado Synthesis

adding a LUT1 to the clock path, which could possibly cause you to not meet timing.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=152

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 153
UG936 (v2018.2) June 6, 2018

Lines 72-108 should look like this:

(* mark_debug *) wire [31:0]axi_araddr;

(* mark_debug *) wire [1:0]axi_arburst;

(* mark_debug *) wire [3:0]axi_arcache;

(* mark_debug *) wire [0 :0]axi_arid;

(* mark_debug *) wire [7:0]axi_arlen;

(* mark_debug *) wire axi_arlock;

(* mark_debug *) wire [2:0]axi_arprot;

(* mark_debug *) wire [3:0]axi_arqos;

(* mark_debug *) wire axi_arready;

(* mark_debug *) wire [2:0]axi_arsize;

(* mark_debug *) wire axi_arvalid;

(* mark_debug *) wire [31:0]axi_awaddr;

(* mark_debug *) wire [1:0]axi_awburst;

(* mark_debug *) wire [3:0]axi_awcache;

(* mark_debug *) wire [0 :0]axi_awid;

(* mark_debug *) wire [7:0]axi_awlen;

(* mark_debug *) wire axi_awlock;

(* mark_debug *) wire [2:0]axi_awprot;

(* mark_debug *) wire [3:0]axi_awqos;

(* mark_debug *) wire axi_awready;

(* mark_debug *) wire [2:0]axi_awsize;

(* mark_debug *) wire axi_awvalid;

(* mark_debug *) wire [0 :0]axi_bid;

(* mark_debug *) wire axi_bready;

(* mark_debug *) wire [1:0]axi_bresp;

(* mark_debug *) wire axi_bvalid;

(* mark_debug *) wire [31 :0]axi_rdata;

(* mark_debug *) wire [0 :0]axi_rid;

(* mark_debug *) wire axi_rlast;

(* mark_debug *) wire axi_rready;

(* mark_debug *) wire [1:0]axi_rresp;

(* mark_debug *) wire axi_rvalid;

(* mark_debug *) wire [31 :0]axi_wdata;

(* mark_debug *) wire axi_wlast;

(* mark_debug *) wire axi_wready;

(* mark_debug *) wire [3 :0]axi_wstrb;

(* mark_debug *) wire axi_wvalid;

18. Save changes to example_jtag_axi_o.v file.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=153

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 154
UG936 (v2018.2) June 6, 2018

19. In the Flow Navigator on the left side of the Vivado window, click Run Synthesis.

20. Open the synthesized design by selecting Open Synthesized Design and clicking OK.

Figure 169: Open Synthesized Design Dialog Box

21. After the synthesized design opens, do the following:

a. Select the Debug layout in the main toolbar Layout drop-down of the Vivado IDE.

Figure 170: Debug Layout in the Vivado IDE Toolbar

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=154

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 155
UG936 (v2018.2) June 6, 2018

b. Select the Debug window near the bottom of the Vivado IDE.

Figure 171: Debug Window in the Vivado IDE

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=155

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 156
UG936 (v2018.2) June 6, 2018

c. Click the Set Up Debug toolbar button to launch the Set up Debug wizard.

Figure 172: Set Up Debug Wizard

22. The Set Up Debug wizard opens, click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=156

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 157
UG936 (v2018.2) June 6, 2018

23. In the next page of the Setup Debug wizard, note that some of the nets that you would like to

debug have no detectable clock domains selected. Click the more info link in the message banner.

Figure 173: Missing Clock Domain Dialog Box

24. In the resulting pop-up, click Assign All Clock Domains.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=157

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 158
UG936 (v2018.2) June 6, 2018

25. In the Select Clock Domain dialog box, select the aclk clock net, then click OK.

Figure 174: Select Clock Domain Dialog Box

26. Observe that all of the nets now have an assigned clock domain. Click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=158

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 159
UG936 (v2018.2) June 6, 2018

27. In the Trigger and Storage Settings area of the ILA General Options page, ensure that Advanced

Trigger and Capture Control are selected. Click Next.

Figure 175: Trigger and Capture Modes Page

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=159

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 160
UG936 (v2018.2) June 6, 2018

28. When Set up Debug Summary page appears, ensure that summary is correct and click Finish.

Note: See that the ILA core was inserted and attached to the dbg_hub core.

Figure 176: ILA Core Inserted into the Design

29. Save the constraints by clicking Save.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=160

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 161
UG936 (v2018.2) June 6, 2018

30. In the Flow Navigator on the left side of the Vivado IDE, click Generate Bitstream.

31. Click Yes to implement the design.

32. Wait until the Vivado status shows write_bitstream complete.

33. In the Bitstream Generation Completed dialog box, select Open Hardware Manager and click

OK.

Figure 177: Select Open Hardware Manager

Step 2: Program the KC705 Board and Interact with the JTAG
to AXI Master Core
1. Connect your KC705 board's USB-JTAG interface to a machine that has Vivado IDE and cable drivers

installed on it and power up the board.

2. The Hardware Manager window opens. Click Open New Target. The Open New Hardware

Target dialog box opens.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=161

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 162
UG936 (v2018.2) June 6, 2018

Figure 178: Connect to a Hardware Target

3. In the Connect to field choose Local server, and click Next.

Figure 179: Hardware Server Name

Note: Depending on your connection speed, this may take about 10 to 15 seconds.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=162

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 163
UG936 (v2018.2) June 6, 2018

4. If there is more than one target connected to the hardware server, you will see multiple entries in

the Select Hardware Target page. In this tutorial, there is only one target as shown in the following

figure. Leave these settings at their default values and click Next.

Figure 180: Select Hardware Target

5. Leave these settings at their default values as shown. Click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=163

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 164
UG936 (v2018.2) June 6, 2018

6. In the Open Hardware Target Summary page, click Finish as shown in the following figure.

Figure 181: Open Hardware Summary

Wait for the connection to the hardware to complete. After the connection to the hardware target is

made, the dialog shown in the following figure opens.

Note: The Hardware tab in the Debug view shows the hardware target and XC7K325T device

that was detected in the JTAG chain.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=164

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 165
UG936 (v2018.2) June 6, 2018

Figure 182: Hardware Target and XC7K325T Device

7. Next, program the previously created XC7K325T device using the .bit bitstream file by

right-clicking the XC7K325T device and selecting Program Device as shown in the following figure.

Figure 183: Program Active Target Hardware

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=165

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 166
UG936 (v2018.2) June 6, 2018

8. In the Program Device dialog box verify that the .bit file is correct for the lab that you are

working on. Click Program to program the device.

Figure 184: Select Bitstream File to Download

Note: Wait for the program device operation to complete. This may take few minutes.

9. Verify that the JTAG to AXI Master and ILA cores are detected by locating the hw_axi_1 and

hw_ila_1 instances in the Hardware Manager window.

Figure 185: ILA Core Instances in the Hardware Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=166

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 167
UG936 (v2018.2) June 6, 2018

10. You can communicate with the JTAG to AXI Master core with Tcl commands only. You can issue AXI

read and write transactions using the run_hw_axi command. However, before issuing these

transactions, it is important to reset the JTAG to AXI Master core. Because the aresetn input port

of the jtag_axi_0 core instance is not connected to anything, you need to use the following Tcl

commands to reset the core:

reset_hw_axi [get_hw_axis hw_axi_1]

Figure 186: Reset JTAG to AXI core

11. The next step is to create a 4-word AXI burst transaction to write to the first four locations of the

BRAM:

set wt [create_hw_axi_txn write_txn [get_hw_axis hw_axi_1] -type WRITE -address

00000000 -len 128 -data {44444444_33333333_22222222_11111111}]

where:

o write_txn is the name of the transaction

o [get_hw_axis hw_axi_1] returns the hw_axi_1 object

o -address 00000000 is the start address

o -len 128 sets the AXI burst length to 128 words

o -data {44444444_33333333_22222222_11111111} is the data to be written.

Note: The data direction is MSB to the left (i.e., address 3) and LSB to the right (i.e., address 0). Also

note that the data will be repeated from the LSB to the MSB to fill up the entire burst.

12. The next step is to set up a 128-word AXI burst transaction to read the contents of the first four

locations of the AXI-BRAM core:

set rt [create_hw_axi_txn read_txn [get_hw_axis hw_axi_1] -type READ -address 00000000 -len 128]

where:

o read_txn is the name of the transaction

o [get_hw_axis hw_axi_1] returns the hw_axi_1 object

o -address 00000000 is the start address

o -len 128 sets the AXI burst length to 4 words

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=167

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 168
UG936 (v2018.2) June 6, 2018

13. After creating the transaction, you can run it as a write transaction using the run_hw_axi command:

 run_hw_axi $wt

This command should return the following:

INFO: [Labtools 27-147] : WRITE DATA is : 44444444333333332222222211111111…

14. After creating the transaction, you can run it as a read transaction using the run_hw_axi command:

run_hw_axi $rt

This command should return the following:

INFO: [Labtools 27-147] : READ DATA is : 44444444333333332222222211111111…

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=168

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 169
UG936 (v2018.2) June 6, 2018

Step 3: Using ILA Advanced Trigger Feature to Trigger on an
AXI Read Transaction
1. In the ILA – hw_ila_1 dashboard, locate the Trigger Mode Settings area and set Trigger mode to

ADVANCED_ONLY.

2. In the Capture Mode Settings area set the Trigger position to 512.

3. In the Trigger State Machine area click the Create new trigger state machine link.

Figure 187: Setting Trigger Mode to ADVANCED and Trigger Position to 512 in the ILA Dashboard

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=169

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 170
UG936 (v2018.2) June 6, 2018

4. In the New Trigger State Machine File dialog box set the name of the state machine script to

txns.tsm.

Figure 188: Creating a New Trigger State Machine Script

5. A basic template of the trigger state machine script is displayed in the Trigger State Machine

gadget. Expand the trigger state machine gadget in the ILA dashboard. Copy the script below after

line 17 of the state machine script and save the file.

The "wait_for_arvalid" state is used to detect the start

of the read address phase of the AXI transaction which

is indicated by the axi_arvalid signal equal to '1'

state wait_for_arvalid:

 if (axi_arvalid == 1'b1) then

 goto wait_for_rready;

 else

 goto wait_for_arvalid;

 endif

The "wait_for_rready" state is used to detect the start

of the read data phase of the AXI transaction which

is indicated by the axi_rready signal equal to '1'

state wait_for_rready:

 if (axi_rready == 1'b1) then

 goto wait_for_rlast;

 else

 goto wait_for_rready;

 endif

The "wait_for_rlast" state is used to detect the end

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=170

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 171
UG936 (v2018.2) June 6, 2018

of the read data phase of the AXI transaction which

is indicated by the axi_rlast signal equal to '1'.

Once the end of the data phase is detected, the ILA core

will trigger.

state wait_for_rlast:

 if (axi_rlast == 1'b1) then

 trigger;

 else

 goto wait_for_rlast;

 endif

Note: The state machine is used to detect the various phases of an AXI read transaction:

 Beginning of the read address phase.

 Beginning of the read data phase.

 End of the read data phase.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=171

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 172
UG936 (v2018.2) June 6, 2018

6. Arm the trigger of the ILA by right-clicking the hw_ila_1 core in the Hardware Manager window

and selecting Run Trigger.

Figure 189: Run Trigger

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=172

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 173
UG936 (v2018.2) June 6, 2018

7. In the Trigger Capture Status window, note that the ILA core is waiting for the trigger to occur, and

that the trigger state machine is in the wait_for_a_valid state. Note that the pre-trigger capture of

512 samples has completed successfully:

Figure 190: Trigger Capture Status Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=173

 Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 174
UG936 (v2018.2) June 6, 2018

8. In the Tcl console, run the read transaction that you set up in the previous section of this tutorial.

run_hw_axi $rt

Note: The ILA core has triggered and the trigger mark is on the sample where the axi_rlast

signal is equal to '1', just as the trigger state machine program intended.

Figure 191: Waveform window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=174

Programming and Debugging www.xilinx.com 175
UG936 (v2018.2) June 6, 2018

Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial
Links

Introduction
IBERT UltraScale+™ GTR (IBERT GTR) can be used to evaluate and monitor GTR transceivers in Zynq®

UltraScale+ MPSoC devices. With this feature, a user can accomplish the following tasks:

 Perform eye scans with user data

 Change GTR settings

 View link status

 Check the “lock” status of all PLLs used by all GTR lanes

IBERT GTR does NOT provide the following capabilities:

 Perform eye scans with raw PRBS data patterns

 Measure Bit Error Ratio (no bit or error counters)

Note that this solution is purely software based, meaning that no IP or logic is required in the

programmable logic of the device. This documentation will guide you through the setup of the GTR

Transceivers by creating a First Stage Boot Loader (FSBL). It will then demonstrate how to load the FSBL

into the Zynq UltraScale+ and use IBERT GTR.

IMPORTANT: This is a supported feature in Vivado® 2017.2 and beyond.

IBERT GTR Flow

The IBERT GTR Bring-up and subsequent EyeScan involves three different components:

1. Generating Zynq UltraScale+ MPSoC PS Hardware Definition File (HDF) from Vivado after

configuring the GTR

2. Using SDK XSCT flow to generate First Stage Boot Loader file by using the Hardware Definition File

(HDF)

3. Using First Stage Boot Loader file with Vivado Serial I/O Analyzer to bring up IBERT GTR.

Tools Required:

 Vivado

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=175

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 176
UG936 (v2018.2) June 6, 2018

 SDK

 XSCT (Part of SDK)

Board/Part/Components required:

 ZCU102 Rev 1.0 board

 XCZU9EG-FFVB1156 production device

 PCIe®:

o A PCIe card which has at least x4 lanes

o PCI Express® 4x Male to PCI-E 16x Female Riser Cable if PCIe card is larger than x4

 SATA:

o SanDisk 128 GB SATA SSD Drive

o SATA connector cable

o 4 Pin Molex to SATA Power Cable Adapter

 USB:

o SanDisk Ultra 32 GB USB 3.0 Flash Drive

o USB 3.0 Type A Female to Micro Male Adapter

Required Files

 First Stage Boot Loader ELF File (Created using instructions below) which configures the GTR

 Configuration Bitstream File (Optional file that may be needed to custom configure the FPGA

depending on the board setup)

 Tcl Script to generate the FSBL and modify C-source for USB Support (when available)

Assumptions

1. FSBL should always target A53 processor as R5 (psu_cortexr5_0) is exclusively used by IBERT GTR.

2. Physical devices such as SATA drive, PCIE card, etc. are needed for validation.

Step 1: Generating Zynq UltraScale+ MPSoC PS Hardware
Definition File (HDF)
1. Open Vivado.

2. Click on Create Project and click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=176

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 177
UG936 (v2018.2) June 6, 2018

Figure 192: New Project Window

3. Set your project name and specify the project directory. Click Next.

4. Select Project type as RTL project

5. To generate default HDF, keep Do not specify sources at this time checked, then click Next.

6. To choose the board, click on the board icon and select Zynq UltraScale+ ZCU102 Evaluation

board, with Board Rev 1.0. Click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=177

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 178
UG936 (v2018.2) June 6, 2018

Figure 193: Board Selection Window

7. The project summary displays. To create the project, click Finish.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=178

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 179
UG936 (v2018.2) June 6, 2018

8. Select Create Block Design in the Flow Navigator. You can specify the design name and directory,

but it is not necessary for a local project directory. Click OK to create the block design.

Figure 194: Create Block Design

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=179

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 180
UG936 (v2018.2) June 6, 2018

9. An empty design diagram displays. Click on Add IP button to add IP. Select IP based on selected

board (for ZCU102 evaluation board, search for 'Zynq UltraScale+ MPSoC') and double click on the

selected IP.

Figure 195: Add IP Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=180

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 181
UG936 (v2018.2) June 6, 2018

10. Select Run Block Automation in the design diagram window. Click OK to continue creating the

ZCU102 design.

Figure 196: Run Block Automation

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=181

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 182
UG936 (v2018.2) June 6, 2018

11. When the design diagram appears, follow the below steps to validate design:

a. Connect maxihpm0_fpd_aclk and maxihpm1_fpd_aclk together to pl_clk0, as shown in

the figure below.

i. Select maxihpm0_fpd_aclk and drag it to maxihpm1_fpd_aclk.

ii. Select maxihpm1_fpd_aclk and drag it to pl_clk0.

b. Right-click on the Zynq UltraScale+ MPSoC block and select Validate Design to validate the

design. It will say validation successful. Click OK.

Figure 197: Validating the Design

12. Customize the design by double-clicking on the Zynq UltraScale+ MPSoC block and configuring the

parameters. There are 4 valid GT configurations for ZCU102 board as shown below:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=182

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 183
UG936 (v2018.2) June 6, 2018

Table 2: Supported GTR Connector Functionality

SEL

(S3,2,1,0)

ICM Settings

(Lane 0,1,2,3)

PCIe

Connector

DP Connector USB

Connector

SATA

Connector

0 0 0 0 PCIe.o, PCIe.1,

PCIE.2, PCIe.3

PCIe Gen2 x4 N.C. N.C. N.C.

1 1 1 1 DP.1, DP.0, USB,

SATA

N.C. DP.0, DP.1 USB0 SATA1

1 1 0 0 PCIe.0, PCIe.1,

USB, SATA

PCIe Gen2 x2 N.C. USB0 SATA1

1 1 1 0 PCIe.0, DP.0, USB,

SATA

PCIe Gen2 x1 DP.0 USB0 SATA1

13. Select the settings based on your requirements by double-clicking on the Zynq UltraScale+ MPSoC

block to customize GT Lane configuration.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=183

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 184
UG936 (v2018.2) June 6, 2018

14. Select I/O Configuration > High Speed. Select one of the four combinations using the settings in

the screenshots below:

a. PCIe – Display Port - USB - SATA (Default Vivado preset)

Figure 198: I/O Customization Window: PCIe – Display Port – USB – SATA (Default)

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=184

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 185
UG936 (v2018.2) June 6, 2018

b. PCIe - PCIe - USB – SATA

Figure 199: I/O Configuration Window: PCIe – PCIe – USB – SATA

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=185

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 186
UG936 (v2018.2) June 6, 2018

c. Display Port - Display Port - USB – SATA

Figure 200: I/O Configuration Window: Display Port - Display Port - USB – SATA

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=186

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 187
UG936 (v2018.2) June 6, 2018

d. PCIe - PCIe - PCIe – PCIe (PCIe x4)

Figure 201: PCIe - PCIe - PCIe – PCIe

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=187

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 188
UG936 (v2018.2) June 6, 2018

15. You can save customized presets using preset by selecting Presets > Save Configuration at the

top of the window. This is useful if you want to save various configurations for future use.

Figure 202: Selecting Save Configuration

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=188

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 189
UG936 (v2018.2) June 6, 2018

16. Saved preset can be applied by selecting Preset > Apply Configuration. A file selection dialogue

will appear as shown below. Choose the preset PCIE-PCIE-USB-SATA and click OK.

Figure 203: Applying a Preset Configuration

17. Click OK when finished customizing GT Lane configuration.

18. Do not click Run Block Automation again, even though the banner will reappear. It will reset the

customized values if used.

19. Click on the Sources tab on the top left of the Block Design window. Under the Block Designs

group, click on IP Sources. Right click on design_1 and then click on Create HDL Wrapper.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=189

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 190
UG936 (v2018.2) June 6, 2018

Figure 204: Create HDL Wrapper

20. Leave the option Let Vivado manage wrapper and auto-update selected. Click on OK in the

dialogue to create HDL Wrapper.

21. Right click on design_1_i in IP Sources tab and click on Generate Output Products.

22. Click on Generate to generate with the default options in the panel.

23. Click OK after the generation is complete.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=190

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 191
UG936 (v2018.2) June 6, 2018

24. Select File > Export > Export Hardware.

Figure 205: Export Hardware

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=191

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 192
UG936 (v2018.2) June 6, 2018

25. You can specify an export directory or use Local to Project. Click OK to export the hardware.

Figure 206: Export Hardware Window

26. You can see generated HDF path in the Tcl Console after the write_hwdef function call.

Figure 207: Running write_hwdef

Step 2: Using XSCT flow to generate FSBL by using HDF
Xilinx Software Command-line Tool (XSCT) is an interactive and scriptable command-line interface to

Xilinx Software Development Kit (Xilinx SDK). The XSCT flow should be used for a more automated flow

that is Tcl based and only requires running a Tcl script. There is an SDK flow that should be used for a

more interactive setup of the FSBL which uses a GUI. You can use the SDK flow if you need to make

changes/customizations to the FSBL. SDK flow could also be used for custom board. See “Appendix A”

for the SDK or XSCT Manual flow.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=192

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 193
UG936 (v2018.2) June 6, 2018

Generating using XSCT Automated Flow:

To create an FSBL for the A53 #0 (64 bit) automatically (and modify the xfsbl_main.c/h files if USB is

present) using the provided script, use the follow steps:

1. Copy the src/lab10/xsct_create_fsbl.tcl script to the directory where the HDF file is

located (e.g. project_gtr/project_gtr.sdk). You can modify the Tcl script if you changed the

default name of the HDF file in Vivado. You can also change the script if the compiler options need

to be different.

2. Open a terminal on Linux or command prompt on Windows.

3. Cd into the directory where the HDF file is located.

4. Call xsct from the SDK install area:

% xsct xsct_create_fsbl.tcl

5. It prints out the location of the generated .elf file when the script completes.

Step 3: ZCU102 Board Settings

USB jumper setting requirements for HOST mode on ZCU102:

1. Make sure below jumpers are correctly set for USB to be in HOST mode (refer to UG1182).

e. J7 – ON

f. J113 – 1-2

g. J110 – 2-3

2. Refer to the below image for jumper settings on a ZCU102 Rev 1.0 board:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=193

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 194
UG936 (v2018.2) June 6, 2018

Figure 208: Jumper Settings for the ZCU102 Board

Using FSBL with Serial I/O Analyzer to bring up IBERT GTR
1. Connect all the physical devices such as SATA Drive, PCIE card, and USB device based on your

selection from the four valid GT configurations for ZCU102 prior to loading the FSBL. Hot swap or

hot plug is not supported.

2. Open Vivado.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=194

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 195
UG936 (v2018.2) June 6, 2018

3. Open hardware manager and connect to a board with a Zynq UltraScale+ device. The example

below shows connecting to a board on a remote machine, so hw_server needs to be running on

the remote machine before it can connect.

Figure 209: Hardware Server Settings

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=195

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 196
UG936 (v2018.2) June 6, 2018

4. Verify the ARM_DAP is visible in the hardware device list and click Next, and then click Finish.

Figure 210: Selecting the Device

5. Right-click on the ARM_DAP device in the hardware tree and select Configure IBERT GTR.

Figure 211: Selecting Configure IBERT GTR

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=196

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 197
UG936 (v2018.2) June 6, 2018

6. When the dialog box opens, you must provide the FSBL ELF file created in the previous steps and

optionally a configuration file (a bitstream, if your design requires one). You can also reset the

system before configuring with the Reset Zynq option checked. Click OK when done.

Note: The Reset Zynq option leaves the ARM_DAP in a bad state on early versions of Zynq

UltraScale+ devices (e.g. ZU9EG es1). If that occurs, power cycle the board and keep the Reset Zynq

option unchecked.

Figure 212: Selecting the FSBL File

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=197

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 198
UG936 (v2018.2) June 6, 2018

7. config_hw_sio_gts is executed with the selected settings. refresh_hw_device is then called

to rescan the device for new debug cores. The IBERT should be configured as shown in the example

below:

Figure 213: IBERT Configuration

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=198

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 199
UG936 (v2018.2) June 6, 2018

8. The Auto-detect links option does not work for GTR. You can manually create links by using Create

Links as shown below:

Figure 214: Selecting Create Links

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=199

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 200
UG936 (v2018.2) June 6, 2018

9. Create links for all four lanes with each lane’s TX connected to the same lane’s RX, as shown in the

figure below.

Click OK when done.

Figure 215: Creating Links

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=200

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 201
UG936 (v2018.2) June 6, 2018

10. The figure below shows the Serial I/O Links view where Status shows all the four lanes as linked.

Figure 216: Serial I/O Links View

Note: The Link 1 PLL Status shows Not Locked, because it uses the Link 0 PLL as required by

PCIe protocol.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=201

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 202
UG936 (v2018.2) June 6, 2018

11. Right-click on any link and select Create Scan.

Figure 217: Selecting Create Scan

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=202

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 203
UG936 (v2018.2) June 6, 2018

12. Select the appropriate parameters for EyeScan and perform the EyeScan. For example, the figure

below is performing EyeScan on Lane L1 (Link 1). Once the EyeScan completes, the eye from -1UI to

+1UI will be displayed.

Note: Although the Create Scan pop up shows -0.5UI to +0.5UI, the EyeScan displayed is from

-1UI to +1UI.

Figure 218: Selecting EyeScan Parameters

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=203

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 204
UG936 (v2018.2) June 6, 2018

13. Below is a sample EyeScan performed on Lane L1:

Figure 219: Sample EyeScan

Note: The value reported by Open UI % is a percentage of the entire horizontal axis, which is

2UI wide for GTR.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=204

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 205
UG936 (v2018.2) June 6, 2018

Troubleshooting

Known Issues

1. By default, FSBL does not enumerate USB as that is something Linux drivers would do. To put USB in

link state without Linux, a small modification is required in the FSBL C-code. This modification still

does not enumerate the device, it only brings the USB into link state.

2. The EyeScan does not have a built-in time-out mechanism. If your link is poor (for example, if

L*_TM_DIG_8.EYESURF_ENABLE != 1), then the EyeScan will hang without providing a user. No

results are returned in this case.

3. If the EyeScan progress is not moving, make sure the below parameters for all lanes are set for

EyeScan to function correctly. Note that * represents the lane number (as in, for Lane 0 the

parameter would be L0).

Click on the lane in the hardware tree and then click on the properties tab. There’s a search button

you can use to find the properties below.

a. L*_TM_MISC3.CDR_EN_FPL = 0

b. L*_TM_MISC3.CDR_EN_FFL = 0

c. L*_TM_DIG_8.EYESURF_ENABLE = 1

Also check below parameters values which ensures Eye Scan circuit is operational.

d. L*_PLL_LOCK = 1

e. L*_TM_SAMP_STATUS4.E_SAMP_PH0_CALIB_CODE is non-zero value

f. L*_TM_SAMP_STATUS5.E_SAMP_PH180_CALIB_CODE is non-zero value

Notes

1. As mentioned in Assumptions, IBERT GTR uses the psu_cortexr5_0 core, so no other applications

should use this core.

2. TCM0 and TCM1 memory are combined to form a unified memory for IBERT GTR. Any other

processor core should not access this memory while IBERT GTR is running.

3. The error counter is 16 bits and the sample counter is 32 bits. Each sample can have 8 bits of error

count. Therefore on the edges, the error counter can saturate with a sample count value of 8192.

GTR does not stop the sample counter even if the error counter saturates. A prescale=0 produces

8192 samples and thus a total samples of 8192 *8 (65536) and thus the outside edges of eye could

show a BER of e-01 or less depending on the prescale selected.

4. The EyeScan assumes there is link present. If there is no link, then the EyeScan may not complete.

Cancelling the EyeScan stops the command sequence, but the state of the previous point scan will

be unknown.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=205

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 206
UG936 (v2018.2) June 6, 2018

5. If you run EyeScan and because of no link the EyeScan does not complete, set the register

L*_TM_MISC_ST_0.EYE_SURF_RUN to 0 for the given lane before you run the EyeScan again.

6. If you run EyeScan on a lane that is either powered down or Display Port, it will immediately stop

and the scan will be marked as incomplete. EyeScan will not work in either scenario.

Using SDK Flow or XSCT Flow to Generate FSBL by Using HDF
The SDK flow should be used for a more interactive setup of the FSBL which uses a GUI as well as when

creating FSBL for custom board. The XSCT flow should be used for a Tcl based flow.

Generating using SDK Flow:

1. Launch SDK from Vivado with the opened Zynq project from earlier with the HDF file generated.

This could be either for ZCU102 board or custom Zynq board. Launch the SDK by selecting File >

Launch SDK.

Figure 220: Launching the SDK

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=206

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 207
UG936 (v2018.2) June 6, 2018

2. Provide the Exported Location path (where your *.hdf file was exported). The SDK Workspace

could also be the same path. This creates the SDK workspace. Click OK.

Figure 221: Creating the SDK Workspace

3. Once the SDK is open, select File > New > Application Project to open the New Project window.

Provide a name for the FSBL project

4. The Target Hardware section is be populated by your generated hardware platform from Vivado

along with the processor psu_cortexa53_0. Keep this processor for FSBL generation.

Note: The psu_cortexr5_0 is used by the IBERT GTR. No other applications should use this core.

5. For psu_cortexa53_*, select 64-bit (default) for Compiler.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=207

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 208
UG936 (v2018.2) June 6, 2018

Figure 222: Creating a New Project

6. Leave other options set to their defaults and click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=208

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 209
UG936 (v2018.2) June 6, 2018

7. Select the Zynq MP FSBL template.

Figure 223: Selecting the New Project Template

8. Click Finish to generate the A53 FSBL. This populates the FSBL code and also builds it, along with

the BSP.

9. Change the compiler optimization flag from O0 to O2. To change this in the SDK, follow these steps:

a. Right-click the FSBL application project and select C/C++ Build Settings.

b. On the Tool Settings tab, select Optimization (under the ARM A53 gcc compiler).

c. On the Optimization Level drop-down menu, change None (-O0) to Optimize more (-O2).

d. Click OK to close the Properties window.

10. Debug prints in FSBL are now disabled by default (except for FSBL banner). To enable debug prints,

you must define the symbol FSBL_DEBUG_INFO. To change this in the SDK, follow these steps:

a. Right-click the FSBL application project and select C/C++ Build Settings.

b. On the Tool Settings tab, select Symbols (under the ARM A53 gcc compiler).

c. Click the Add button in the Defined symbols (-D) section and enter the value:
FSBL_DEBUG_INFO

d. Click OK to close the Properties window.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=209

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 210
UG936 (v2018.2) June 6, 2018

11. Skip this step if you are building FSBL for a custom board.

For building the FSBL for a ZCU102, define the additional symbol XPS_BOARD_ZCU102. Note that in

this flow, the Hardware Platform (HDF) was created using the ZCU102 board preset, so the

XPS_BOARD_ZCU102 symbol may be defined by default in the FSBL. If it is present, it does not need

to be redefined.

To define the symbol in the SDK, follow these steps:

a. Right-click the FSBL application project and select C/C++ Build Settings.

b. On the Tool Settings tab, select Symbols (under ARM A53 gcc compiler).

c. Click the Add button in the Defined symbols (-D) section and enter the value:
XPS_BOARD_ZCU102

d. Click OK to close the Properties window.

12. If the current configuration has USB set on one of the GTR lanes, then the FSBL source files need to

be modified. This is needed to set the USB in a linked state. This step should only be performed

when using an “FSBL only” setup with IBERT GTR. When Linux setup is used, USB drivers set the link

appropriately and this step is not needed.

13. Open the files in SDK mentioned in next step, located in the applications src folder.

Make the appropriate changes and save the file, which automatically builds the project and

generates <application_name>.elf in the Debug folder inside the applications folder.

If building for a custom board, make sure you do the appropriate changes to bring up the USB in a

linked state. After this step the FSBL should be ready to be used in Vivado.

Bringing the USB into a Linked State

xfsbl_main.h

After the first line below, add the EyeScan changes as highlighted to xfsbl_main.h:

#define XFSBL_IMAGE_SEARCH_OFFSET (0x8000U) /**< 32KB offset */

/**

 * EyeScan

 */

#undef USB3_0_XHCI_GCTL_OFFSET

#define USB3_0_XHCI_GCTL_OFFSET 0XFE20C110

#define USB3_0_XHCI_GCTL_U0_LTSSM_MASK 0XFFFFDFFFU /*GCTL[13:12]=01*/

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=210

 Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links

Programming and Debugging www.xilinx.com 211
UG936 (v2018.2) June 6, 2018

xfsbl_main.c

After the lines below, add the EyeScan changes as highlighted to xfsbl_main.c:

XFsbl_Printf(DEBUG_INFO,

 "================= In Stage 4 ============ \n\r");

//EyeScan

u32 RegValue;

RegValue = Xil_In32(USB3_0_XHCI_GCTL_OFFSET) &

 USB3_0_XHCI_GCTL_U0_LTSSM_MASK;

Xil_Out32(USB3_0_XHCI_GCTL_OFFSET, RegValue);

Generating using XSCT Manual Flow:

1. To create an FSBL for the A53 #0 (64 bit), type xsct from shell in the directory where the HDF file is

located.

2. From the xsct console, issue the following commands:

setws

createhw -name hw0 -hwspec <path to hdf generated by you>

createapp -name fsbl_design_1 -app {Zynq MP FSBL} -proc psu_cortexa53_0 -

hwproject hw0 -os standalone -arch 64 -lang C

configapp -app fsbl_design_1 -set compiler-optimization {Optimize more (-O2)}

configapp -app fsbl_design_1 -add define-compiler-symbols FSBL_DEBUG_INFO

3. If using the ZCU102, also run this command:

configapp -app fsbl_design_1 -add define-compiler-symbols XPS_BOARD_ZCU102

4. Make changes to xfsbl_main.c and xfsbl_main.h as shown above in Bringing the USB into a

Linked State if the USB is in one of the GTR lanes. Save these files.

5. Run the following command:

projects -build

The FSBL ELF file, fsbl_design_1.elf, will be generated in the fsbl_design_1/Debug/ directory.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=211

Programming and Debugging www.xilinx.com 212
UG936 (v2018.2) June 6, 2018

Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum

extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES

AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,

including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in

connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss

or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party)

even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no

obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not

reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and

conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP

cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or

intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products

in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF

AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A

SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY

DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS,

THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A

SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING

LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2012-2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein

are trademarks of Xilinx in the United States and other countries. PCI, PCIe and PCI Express are trademarks of PCI-SIG and used under

license. All other trademarks are the property of their respective owners.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2018.2&docPage=212

	Vivado Design Suite Tutorial: Programming and Debugging
	Revision History
	Table of Contents
	Debugging in Vivado Tutorial
	Introduction
	Objectives
	Getting Started
	Setup Requirements
	Software
	Hardware
	Tutorial Design Components
	Board Support and Pinout Information
	Design Files
	Connecting the Boards and Cables

	Lab 1: Using the Netlist Insertion Method for Debugging a Design
	Introduction
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesizing the Design
	Step 3: Probing and Adding Debug IP
	Adding Debug Nets to the Project
	VHDL
	Verilog

	Running the Set Up Debug Wizard

	Step 4: Implementing and Generating Bitstream.

	Lab 2: Using the HDL Instantiation Method for Debugging a Design in Vivado
	Introduction
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesize Implement and Generate Bitstream

	Lab 3: Using a VIO Core for Debugging a Design in Vivado
	Introduction
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesize, Implement, and Generate Bitstream

	Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design
	Introduction
	Step 1: Create a Synplify Pro Project
	Step 2: Synthesize the Synplify Project
	Step 3: Create DCPs for the Black Box Created in Synplify Pro
	Step 4: Create a Post Synthesis Project in Vivado IDE
	Step 5: Add More Debug Nets to the Project
	Running the Set up Debug Wizard

	Step 6: Implementing the Design and Generating the Bitstream

	Lab 5: Using Vivado Logic Analyzer to Debug Hardware
	Introduction
	Step 1: Verifying Operation of the Sine Wave Generator
	Target Board and Server Set Up
	Connecting to the target board remotely
	Connecting to the Target Board Locally

	Using the Vivado Integrated Logic Analyzer
	Verifying Sine Wave Activity
	Displaying the Sine Wave
	Correcting Display of the Sine Wave

	Step 2: Debugging the Sine Wave Sequencer State Machine (Optional)
	Sine Wave Sequencer State Machine Overview
	Viewing the State Machine Glitch
	Fixing the Signal Glitch and Verifying the Correct State Machine Behavior
	Verifying the VIO Core Activity (Only applicable to Lab 3)

	Lab 6: Using ECO Flow to Replace Debug Probes Post Implementation
	Lab 7: Debugging Designs Using Incremental Compile Flow
	Introduction
	Procedure
	Step 1: Opening the Example Design and Adding a Debug Core
	Step 2: Compiling the Reference Design
	Step 3: Create New Runs
	Step 4: Making Incremental Debug Changes
	Step 5: Running Incremental Compile
	Conclusion

	Lab 8: Using Vivado Serial Analyzer to Debug Serial Links
	Introduction
	Design Description
	Step 1: Creating, Customizing, and Generating an IBERT Design
	Step 2: Adding an IBERT core to the Vivado Project
	Step 3: Synthesize, Implement and Generate Bitstream for the IBERT design
	Step 4: Interact with the IBERT core using Serial I/O Analyzer

	Lab 9: Using Vivado ILA Core to Debug JTAG-AXI Transactions
	Introduction
	What is the JTAG to AXI Master IP core?
	Key Features
	Additional Documentation

	Design Description
	Step 1: Opening the JTAG to AXI Master IP Example Design and Configuring the AXI Interface Debug Connections 
	Step 2: Program the KC705 Board and Interact with the JTAG to AXI Master Core
	Step 3: Using ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction

	Lab 10: Using Vivado Serial Analyzer to Debug GTR Serial Links
	Introduction
	IBERT GTR Flow
	Tools Required:
	Board/Part/Components required:
	Required Files
	Assumptions

	Step 1: Generating Zynq UltraScale+ MPSoC PS Hardware Definition File (HDF)
	Step 2: Using XSCT flow to generate FSBL by using HDF
	Generating using XSCT Automated Flow:

	Step 3: ZCU102 Board Settings
	USB jumper setting requirements for HOST mode on ZCU102:

	Using FSBL with Serial I/O Analyzer to bring up IBERT GTR
	Troubleshooting
	Known Issues
	Notes

	Using SDK Flow or XSCT Flow to Generate FSBL by Using HDF
	Generating using SDK Flow:
	Bringing the USB into a Linked State
	xfsbl_main.h
	xfsbl_main.c

	Generating using XSCT Manual Flow:

	Legal Notices
	Please Read: Important Legal Notices

