
How Do Agents Affect Modifiability? A
Comparison Between Two Architectures for

Intelligent Virtual Environments for Training

Gonzalo Méndez and Angélica de Antonio

Computer Science School
Technical University of Madrid

gonzalo@gordini.ls.fi.upm.es, angelica@fi.upm.es

Abstract. The use of agents is spreading as a means to develop dif-
ferent kinds of software systems, among which we can find Intelligent
Virtual Environments for Training. The agent community has already
started to pay attention to software engineering issues to develop agent-
oriented systems, but they are mainly focused on methodologies and, to
some extent, design patterns. However, not much attention has been paid
to software architecture for the moment. We compare two agent-based
software architectures for Intelligent Virtual Environments for Training
that are intended to be easily extended and modified. The first one was
designed using an organizational approach recommended by some agent
oriented methodologies. The second one is a redesign of the first architec-
ture using more formal principles and methods of software architecture
design. A comparison between both architectures highlights the need to
use more formal approaches to design this kind of application, specially if
we expect to achieve interchangeability of components between different
applications.

1 Introduction

An Intelligent Tutoring System (ITS) is an application of computer science to
education that has a particular structure shown in Fig 1 [1, 2]. They are dif-
ferent from other educational software in that they are “intelligent”, since it is
possible to adapt teaching to the abilities and characteristics of every student.
In addition, their structure was thought to make it possible to easily change
the teaching domain (expert module) the tutoring strategy (tutoring module)
or the way students are modeled in the system (student module). However, the
biggest success of ITSs is the fact that a great deal of researchers in educational
software use the structure shown in Fig. 1, with research groups specializing in
the development of each of the different modules.

A special kind of application of computer science to education are Educa-
tional Virtual Environments which are software systems that make use of three
dimensional Virtual Environments (VEs) for education and training. Their de-
velopment has a quite short history, dating from the mid-nineties, and in some



Fig. 1. Architecture of an ITS

cases they have evolved from the necessity to integrate a VE with an ITS. The
use of VEs in fields such as military or industrial training has proven to be a very
promising application area, so part of the education community are making use
of VEs to develop Intelligent Virtual Environments for Training (IVET), which
are the conjunction of an ITS and a VE for training.

The youth of the field, together with the complexity and variety of the tech-
nologies involved, have led to a situation in which neither the architectures nor
the development processes have been standardized yet. Therefore, almost every
new system is developed from scratch, in an ad-hoc way, with very specific so-
lutions and monolithic architectures (even if the allegedly make use of the ITS
structure), and in many cases forgetting the principles and techniques of the
Software Engineering discipline [3].

The MAEVIF project (Model for the Application of Intelligent Virtual En-
vironments to Education) was the result of several experiences integrating VEs
and intelligent tutors [4, 5] that served to point out the problems that commonly
arise in such integrations. The objective of the MAEVIF project was to define
a model for the application of intelligent virtual environments to education and
training, which involved: the definition of a generic model for intelligent learning
environments based on the use of virtual worlds; the definition of an open and
flexible agent-based software architecture to support the generic model of an
Intelligent Virtual Environment for Training (IVET); the design and implemen-
tation of a prototype authoring tool that simplifies the development of IVETs,
based on the defined architecture; and the definition of a set of methodological
recommendations for the development of IVETs.

In this paper we present two different approaches to the design of a software
architecture for IVETs. The first one is the result of applying a specific Agent
Oriented Software Engineering (AOSE) methodology, while the second is the



result of applying more specific, architecture centric techniques. Our aim is to
use our system as a case study for the application of general software engineer-
ing techniques to the development of agent-oriented software, since we believe
the agent community is not making enough use of the knowledge produced by
the software engineering community in general, and the software architecture
community in particular.

In the remainder of the paper we briefly describe the first version of the
architecture and the results of evaluating it(section 2). Then, we describe how
the agent-based software architecture has been designed using software architec-
ture principles (section 3) and how it is being evaluated (section 4). After that,
we present some related work where agents have been used to develop IVETs
(section 5). Finally, we present some conclusions and ongoing work (section 6).

2 An Agent-Based Architecture for IVETs

There are two main reasons why we have chosen agents to develop this system
instead of a more traditional approach, either object or component oriented. The
first reason, as described in [6] is the fact that, given the increasing complexity
that the development of IVETs involves, agents represent a powerful tool to use
abstraction as a way to face complexity. In addition, the fact that many agent
platforms are developed on top of object oriented languages makes it possible
to take advantage of all the possibilities provided by these languages (i.e. JADE
and Java).

The second reason is that, although a widely accepted definition of agent does
not currently exist, many authors agree on a set of features that agents must
have, among which we can find both proactivity and situatedness. Given the fact
that IVETs are a highly interactive kind of application, proactivity is a feature
that is very well suited for their development, since it facilitates the design of
tutors that interact with the students in a human-like way. In addition, training
inside an IVET makes it necessary for the tutor to be aware of the structure
and state of the environment where that training is taking place. Therefore,
situatedness is a feature that makes it possible to manage that information in a
more natural way.

This does not mean that the mere use of agents is the solution for all prob-
lems, but properly used they are likely to ease the design and implementation
of a suitable solution.

2.1 A Hierarchical Approach

Taking the structure described in the previous section as a starting point, the
next step was to decide which software agents were necessary to transform it into
an agent-oriented architecture, which has been designed using the GAIA method-
ology [6]. In this methodology, the authors suggest the use of the organizational
metaphor to design the software architecture, which requires the analysis of the
real world organization in order to emulate its structure. This approach does



Fig. 2. Decomposition view of the agent-based architecture

not always work (depending on particular organization conditions), but in this
case, considering the architecture of an ITS as the organization to reproduce, it
is possible to imitate its structure to develop the system architecture.

There is an additional reason to use an ITS structure as a starting point:
the ITS architecture shown in Fig. 1 is widely used by the educational software
community. Therefore, if we aim at being able to exchange elements between
different applications, making use of a widely used, well known structure is likely
to facilitate this task.

The ITS architecture was transformed, from a modular point of view, into an
agent-based architecture. It has five agents corresponding to the four modules
of the ITS architecture plus an agent that represents the Virtual World: Com-
munication Agent, Student Modeling Agent, Expert Agent, Tutoring Agent and
World Agent.

Analyzing the responsibilities of these agents, some additional roles can be
identified that point to the creation of new, subordinate agents that can carry
them out, subsequently giving rise to a hierarchical multi-agent architecture.
Each subordinate agent is in charge of managing some process and the infor-



mation related to it, while each supervisor agent is in charge of coordinating
its subordinate agents and communicating them with other subordinate agents
through their respective supervisor. A decomposition view of this architecture
can be seen in Fig. 2.

For more details about this architecture, we suggest reading [7] or a more
detailed description in [8].

2.2 Discussion

All along the design and development of the architecture, one of the aspects
that has had a bigger impact on it has been the planning process, since, due to
the fact that it is a collaborative task, a change in the planning method or in
the way that knowledge is represented may imply changes in all the agents that
take part in it. At the beginning, a simple STRIPS planner [9] was implemented.
However, trying to substitute it with one based on SHOP2 (Simple Hierarchical
Ordered Planner 2) [10] showed that it was far more complicated and required
more changes than expected.

Another aspect we tested was how easy it was to add new functionality to the
IVET. To do this, we added an embodied tutor whose goal was to observe what
happened in the VE and follow the student to supervise him. It was necessary
to add two new agents and, although it was quite easy to make these changes, it
soon became clear that any non-trivial change was likely to affect at least one of
the supervisor agents (the one that supervises the modified agent) if not more.
In addition, all the agents knew of the existence and identity of the agents they
had to communicate with, so they were easily affected by changes.

There were some other factors that made us think that a redesign of the
architecture was necessary, both at design and implementation levels. One of
them was the poor performance the system offered when several students were
taking part in a training session. Several tests pointed out that the agent platform
presented a fairly good performance, and so did the VE. The problem arose when
running both of them at the same time in different machines, which made us
think of poor communication performance.

In addition, we were having problems when trying to add new functionality,
since it was not clear whether some responsibilities were to be assigned to the
expert agent or to the world agent, both of which started to be too coupled
for the system to be modifiable. This is a problem that usually arises when
establishing classifications and hierarchies: if the criteria used for classification
changes or some elements dont fully fall under one of the categories, then the
decomposition degrades quite quickly. This was the case with our architecture.

Finally, there were other facts that pointed out the unsuitability of the ar-
chitecture. Among them, some are described in [11] as an indication of a poor
design, such as the proliferation of agents to carry out small tasks, the difficulty
to assign responsibilities to an agent or the existence of agents that carry out
actions for which an agent is not needed. These problems were caused, at least
partially, by the lack of an architectural design method in a not very mature
field like IVETs.



3 Architectural Redesign

The main theoretical support to redesign the architecture has been the body of
work on software architecture developed at the Software Engineering Institute
(SEI) [12–14], such as Attribute Driven Design (ADD), Architecture Tradeoff
Analysis Method (ATAM) and Views and Beyond (V&B). The purpose of the
first two methods is to design and evaluate a software architecture driven by
the quality attributes desired for it, instead of only the functionality. A set of
scenarios is used to help identify the quality attributes that are relevant for the
architecture, based on the stakeholders interests, and to evaluate the architecture
in order to identify potential risks.

The other important support has been provided by the use of information
hiding [15], which establishes that a division in submodules must be such that
each submodule encapsulates a design decision that must remain hidden from the
rest, and communication among submodules is carried out using an interface with
a definition as abstract as possible. The design decisions that are encapsulated
in each module are related to the changes that are perceived to be likely over
the system’s life. The way to proceed, then, is to use abstraction as a means to
face complexity and facilitate changes.

Although we planned to use ADD as the architectural design method, we
discarded it after a few design sessions because of two reasons. The first reason
is the fact that ADD is based on a hierarchical system decomposition, and one
that does not allow elements to have more than one father. After the experience
gained with the previous architecture, we did not think a hierarchical structure
was what we wanted to obtain. In addition, some of the problems we had with
the first architecture was the fact that some agents were not clearly under the
supervision of one of the five supervisor agents. The second reason has to do
with the complexity of decomposing a module in more than four or five elements,
which was likely to be the case (in the current design, the ITS consists of nine
different kinds of agents).

We soon found two more grounded reasons to discard ADD as a design
method. The first one is Parnas argument expressed in [16], where he clearly
states that, although maybe desirable, information hiding and hierarchical struc-
ture do not always go together. On the contrary, we consider information hiding
to be a design criterion, and not just a decomposition one. The other reason
can be found in [17], where the author analyzes Simon’s “Architecture of Com-
plexity” and identifies the historical reasons that made hierarchical structure a
predominant design mechanism.

Agent systems are intrinsically peer-to-peer (after all, they were born in the
distributed artificial intelligence field), where each agent is a peer that makes use
of services offered by other agents to carry out the responsibilities assigned to it.
Therefore, this is the approach we have followed to design the new architecture.
Like ADD suggests, we have started by selecting the architectural drivers for our
application. However, instead of following a decomposition approach, we have
worked using an iterative an incremental approach. A sketch of the architecture
was always present in a whiteboard in the architectural design sessions. Every



time a feature had to be added, or a change had to be made, it was tested against
the architectural drivers until a way was found to satisfy them. In that moment,
the change was added to the architectural design.

This is probably one of the issues ADD still has to address, since it is not
always possible to face a new design or modification as a hierarchical decompo-
sition.

3.1 Quality Attributes

The design started with the definition of a set of quality scenarios to establish
what kind of changes were to be considered by the design. In general, this changes
have to do with the ability to substitute an agent with a different one that
provides a similar functionality, or to move some responsibility from one agent
to another. This is required because one of the objectives of the system is to be
used as a test-bed for teams developing just some of the elements of the ITS
(e.g. the student modelling or the tutoring strategy).

Another kind of change is the possibility to turn off some functionality, such
as supervision, so that the student can use the system in an exploratory way
without the tutor interrupting him (although the system would continue regis-
tering his actions), or even disabling tutoring completely.

The system is also required to be easily extended, so that new agents that
provide new functionality can be added without having to make changes in
the existing ones (at least, in the ones that don’t make direct use of the new
functionality).

Taking into account that training is carried out in a VE, all these modifiability
requirements cannot be an obstacle for the main objective of the system, which
is to provide students with a training environment as similar as possible to
the real one. For that, it is of utmost importance to keep performance close to
real time. If not, the training experience may be somehow frustrating for the
student, which may cause the training experience to be less efficient than other,
more traditional, methods.

There is a usability attribute, adaptation to the user, that has not been
considered explicitly because it is already included in the objectives of an ITS.
The student modelling is used to personalize the training process to the student’s
abilities and needs, so it has not been necessary to consider it as an additional
quality attribute to take into account.

3.2 Design Decisions

With the described modifiability objectives in mind, the approach we followed
was to keep the agents as anonymous as possible, so that no agent directly
knows what other agents are carrying out the actions they need to successfully
complete their responsibilities. To achieve this, during system startup, the agents
announce in the system’s yellow pages the services they are capable to provide
to other agents. Thus, an agent does not know how many or what kind of agents



there are in the system; they just know that there is an agent that can provide a
certain service they need. This way, it is easier to change the agent that provides
a service, as long as the service is provided in the same terms the original one was.
This requirement is similar to Liskov’s substitution principle in object oriented
design [18].

Once the agent finds the service it is looking for, it can act in two different
ways. If the service involves frequent updates, the agent subscribes to an update
list, so that every time an update arrives, it is immediately informed about it.
If, on the contrary, the agent only needs to request the service at specific times,
it annotates which agent it has to request the service to. In both cases, the
decision is made at runtime, so changes in the design are easier to carry out.
We considered the possibility of giving the chance to change the service provider
any time during runtime, but we discarded it because it is not likely to happen
in a system of this kind.

The agents communicate with each other exchanging FIPA ACL messages.
Since it is a quite extended formalism, the difficulties may come from the com-
munication protocol. We have designed a fairly simple communication protocol
for a given agent to request a service from another agent. Agent A sends a re-
quest to agent B, who acknowledges the reception of the request. Then agent B
carries out the required actions and sends agent A the result of the execution
of the service (or a message with the reasons why it could not be carried out).
Agent A acknowledges the reception of the result and the communication stops
until another service request is required.

A similar mechanism has been used to communicate the agent platform with
the VE, but with an even simpler communication mechanism. A communication
centre has been designed where both the agent platform and the VE send their
messages for other applications to receive them. Each application subscribes to
the messages it is interested in receiving, so that, for example, different VEs or
different versions of a VE only receive the messages they know how to handle.
We have used this possibility all along the development of the agent platform, so
we could send the messages we wanted to test from a console instead of having
to run the VE and carry out a specific procedure before the message we were
interested in could be sent.

We have also made use of configuration files to set up the training session.
Thus, the description of the procedures to be trained, the composition of the
scenarios, the objectives of the activity, its participants or the parametrization
of the tutoring strategy are all read from several configuration files, which allows
changes in the way the system behaves without further changes in the design.

3.3 Resulting Architecture

The resulting architecture is the one shown in Fig. 3. The picture shows the
structure of the architecture as it is currently designed, where all the agents are
represented along with the communication channels (the yellow pages are not
represented, since all the agents communicate with them).



Fig. 3. Peer-to-peer view of the new architecture. Ellipses represent agents and arrows
show communication channels

During runtime, there is only one agent of each kind, except for the agents
that are directly related with students: the Student Modelling Agent and the
Communication Agent. This is so because, having several students, the system
can handle the communication with them in parallel. In addition, if the agent
platform needs to be distributed in different machines, the distribution can be
made in terms of the number of students.

The main differences with the former architecture are:

– There is no hierarchical structure. Since the existence of the supervisor agents
was due to modifiability reasons, and it was only achieved in a low degree,
it has been considered preferable to use a peer-to-peer style.

– It uses a publish-subscribe style to offer a service oriented behaviour. Agents
advertise their services in the yellow pages and other agents can subscribe
to the services they are interested in. Although we were not aiming at ob-
taining a Service Oriented Architecture, this is one of the mechanisms that
introduces a higher degree of modifiability in the system.

– Task planning is not a collaborative task any more. The planning agent acts
as a wrapper [19] for the planner, hiding details of its functioning to the rest
of the system and enabling the change of the planing algorithm with a lower
impact than collaborative planning had.

– Extended support for a simulator. Some systems such as the one described in
[20] simulate environmental events that may be caused by external factors,
such as changes in the state of a patient. In the cited system, events are



directly simulated in the VE, but it may also be desirable to use an external
simulator in cases where it has already been implemented or when it has a
complex behaviour. The simulation agent can now simulate simple systems,
but it can also receive information from a simulation running together with
the VE or act as a wrapper of an external simulation.

– The tutoring strategy can be adjusted by changing some parameters that are
read from a configuration file during the initialization of the system. These
parameters are expected to change dynamically with the new design of the
student modelling agent.

– The world agent is responsible for maintaining an ontology that stores the
state of the VE. A simple reasoning engine has been added so that the world
agent is able to provide richer answers to the student.

– A message centre is now used to communicate the different subsystems that
form the training system. Each subsystem registers in the message centre
and requests the kind of information it is interested in. Currently, in addition
to the VEs and the ITS, a command line console can also connect to the
message centre with debug purposes.

4 Evaluation

In addition to the more formal design and documentation of the software ar-
chitecture, we are currently evaluating the suitability of the architecture to our
needs both at architectural and runtime levels.

At the architectural level, the evaluation requires the use of quality scenarios
provided by the stakeholders to identify relevant quality attributes We are trying
to gather a thorough collection of scenarios that gives us a better understanding
of the implications of the design decisions we have made. In order to do it, we
have run an ATAM session and we are planing to run another one in the context
of a 3-year research project, ENVIRA, that has already started in conjunction
with two other research groups that will be using the multiagent system to
develop their own training systems.

In the first session, the participants were the members of the development
team, and we only made use of some steps of Phase 0 and of Phase 2 of ATAM,
as described in [14], since all of them were familiar with the architecture. The
main objectives of this session were to identify and evaluate use case scenarios
and growth scenarios.

Given the composition of the group that took part in the evaluation, no
significant results were obtained in terms of use case scenarios, although we
have been able to check that the design decisions we made while designing the
architecture were still valid. As for the growth scenarios, we were able to identify
sensitivity points that we will have to cope with in the ENVIRA project. These
sensitivity points have to do with the addition of a new student modelling scheme
and a cognitive architecture for virtual characters managed by agents.

We have already scheduled a second ATAM session where the members of
the other two research teams will also take part. In this session, we expect to get



more results about growth scenarios related to their assignments in the project
and a few exploratory scenarios provided by the members of the three groups
that are taking part in the ENVIRA project.

There is not a complete report on the results of the evaluation of the archi-
tecture yet, but we intend to have it as soon as the second ATAM workshop is
finished.

To test the system at runtime level, we are developing it in an iterative way.
Each agent is being developed apart from the rest of the system, and the agents
they need to communicate with have been substituted by ’dummy’ agents. At
the end of each iteration, the dummy agents are removed and substituted by the
agents that are under development. This way, the development keeps focused
on three aspects: adherence to the designed communication protocols; change
of one agent by a different one, even if it is as simple as the dummy agents
are; turning some functionalities on and off, with the aid of the dummy agents
(although another mechanism is to be designed so that the dummy agents are
not necessary to turn off functionalities).

There is already a functional application that offers much of the functionality
that the previous version provided. For the moment, the student modelling is
quite simple, as well as the simulation agent. In contrast, the tutoring agent is
capable of supervising the student, providing different levels of hints and answers
to the student’s questions. The planning agent is already capable of planning a
procedure and replanning alternatives in response to the student’s actions, and
the world an expert agents provide support to the tutoring agent, so that it can
provide better assistance to the student according to the state of the environment
and the characteristics of the procedure the student is training. Both the agent
platform and the VE show an adequate performance when running at the same
time in the same or different machines, either with one or two students. Further
testing is needed to add more students, but with the current results we expect
the system to behave better than the previous version.

5 Related Work

There are several projects aiming at the use of VR for education and training
supported by intelligent agents. The first ones were developed over a decade ago,
and the most representative among them are Steve [21], Adele [22], Cosmo [23],
Herman the Bug [24] and Vincent [25]. What all of them have in common is
the fact that the primary objective in all of them was to develop an embodied
pedagogical agent to support education and training. Each of them tried to solve
some of the problems that this emerging discipline posed.

None of these systems are structured as multiagent systems, but as a single
agent that inhabits a particular virtual world, and each of them exhibits its own
internal architecture. Even so, they have been the key to identify some of the
issues that researches are still trying to solve in a satisfactory way.

There are some examples of multiagent systems that support education and
training without using VEs. That is the case of FILIP, a multiagent system for



training based on simulations [26] to provide training for air controllers. The
system is composed by seven agents that cover the modules of an ITS: one for
the student, one for the expert, three for the tutor (skill development, curriculum
and instructor agents) and two other agents related to the communication with
the learning environment and the user.

Baghera is another example of multiagent system used to teach geometry [27].
The aim of this system is to study emergent behaviours in multiagent systems.
What makes this system more interesting is the fact that agents are organized
in two levels, and the number of agents is not fix, but varies according to the
number of students connected to the system. Each student is assisted by three
agents: the personal interface agent, which monitors the student’s actions, the
tutor agent and the mediator agent. In addition, the tutor is assisted by two
agents: the personal interface agent and the assistant agent. All these agents are
supported by second level agents of four different kinds, which are in charge of
evaluating the student’s actions. This is made through a voting mechanism that
causes the emerging behaviours that are the subject of study.

The systems that are closer to the one described in this paper are those that
are based on multi-agent systems and make use of VEs to support training. A
good example is MASCARET (Multi-Agent Systems to simulate Collaborative,
Adaptive and Realistic Environments for Training) [28], an agent-based IVET
that has been used to train firemen in operation management. In this system,
agents are divided in organizations, each of which controls different aspects of the
organization: physical, social, pedagogical, mediation, and human interaction.
The agents that integrate the pedagogical organization cover the four modules
of an ITS, plus a fifth module that is in charge of controlling the mistakes an
student may make. The expert agent communicates with the social and physical
organizations to be able to know what to to and what objects and agents are
involved in an action.

Lahystotrain is an IVET developed to train surgeons in laparoscopy and
hysteroscopy interventions [20]. This systems contains five agents which help
the student in the training process. One of them is the tutor, which supervises
the student and registers his actions. An assistant agent provides explanations
and interrupts him when he makes a mistake. These agents have an ad-hoc
architecture tailored to suit their responsibilities. The other three agents take
the role of an auxiliary surgeon, a nurse and an anaesthetist that play their role
within the team. Their architecture is the same for all three, and it is a kind of
BDI architecture with a perception module, a reasoning engine and an action
control module. The student must learn what the role of these three agents is
and how to coordinate them.

What most of these systems have in common is the fact that they have been
developed to solve a specific problem, but only a few of them have been designed
to be reusable, at least to some extent [21, 4, 29], and apparently none of them
have taken advantage of the existing knowledge on software architecture. This is
an aspect that was already put forward in [30], where three main problems are
mentioned: the fact that most research groups develop only part of the systems,



which does not give them a view about the whole design; systems are tailored
to solve specific problems; and designs are not evolutive. They claim that an
ITS can be developed as a set of independent agents that exchange messages
in a predefined language, and they use the concept of federated architecture
[31] to articulate their system GIA. To some extent, the architecture described
in this paper follows those guidelines, although the federated architecture has
been substituted by a service oriented approach and a more formal software
engineering support has been used.

There are few examples of multiagent systems that have been evaluated us-
ing ATAM. Among these systems, we can highlight the work presented in [32],
where the authors report a successful utilization of an ATAM workshop to evalu-
ate an agent-based software architecture for an industrial transportation system.
Although they do not explain the method that was used to design the architec-
ture, they suggest they took quality attributes into account when designing it.

Another work reporting the use of ATAM is the one described in [33], which is
the first reference we have found about the use of ATAM to evaluate a multiagent
system. In this work, the authors put forward what they think to be relevant
attributes in agent-based systems: performance predictability, security against
data corruption and spoofing, resilience to modifiability of the environment and
availability and fault tolerance. Although not all of them are applicable to the
system presented in this paper, this work constitutes an important approach from
agent-oriented software development to more traditional software construction.

6 Conclusions and Ongoing Work

It is getting common for Virtual Environments for Training to be designed as
Multi-Agent Systems, since agents provide a higher level of abstraction than
objects and this helps to face the increasing complexity that involves the devel-
opment of these systems.

Many authors claim, without further proof, that their systems are flexible
because they are using agents to build them, and to some extent we may have
made the same mistake in our first version of the architecture. Although it had
been designed with modifiability in mind, it soon became clear that successive
modifications were making the architecture degrade quite quickly. That expe-
rience is one more example to show that the mere use of agents (or any other
technology) does not guarantee that the application developed using them will
have certain properties. On the contrary, the result may be even worse if the
design decisions have not been made with care.

In the second version of the architecture, we have tried to take advantage
of the growing experience in the field of software architecture, even if it is not
specifically agent oriented (something that is not considered to be necessary at
the architectural level [12]). As with the previous version of the architecture,
only time and changes will prove whether we made the right design decisions or
not, but the fact that this time the architecture was more carefully crafted and
the current results make us think so.



However, we have not been able to use ADD for the architectural design,
given the fact that a hierarchical decomposition does not seem to suit our needs.
A review of the new version of ADD [34] shows it is based on the same design
strategy, so we still need a different design approach that is not based on hierar-
chical structure and decomposition. Even so, designing with quality attributes
as architectural drivers as ADD promotes has resulted in a design that, up to
now, has proven to be more modifiable than the previous design was.

As for the use of ATAM, it is a valuable tool from which we still expect to
obtain useful results as soon as the second workshop is carried out

We are already making changes to the system to test to what extent it can
be modified, and they are being evaluated both on the architectural design and
on the implemented system. In addition to the modification of the student mod-
elling agent, there are two main changes that will prove the suitability of the
architecture. The first one is the inclusion of a model of human-like perception
[35] to use the student’s attention as part of the student’s model and as an
additional source of information for tutoring decisions. The second one is the
inclusion of a cognitive architecture that allows us to make use of virtual tutors
and teammates with complex, emotional behaviours [36].

Acknowledgements This research has been funded by the Spanish Ministry of
Science through projects MAEVIF (TIC2000-1346), ICEVAPI (TIN2004-07946)
and ENVIRA (TIN2006-15202-C03-01) and has been supported by the INTU-
ITION NoE.

References

1. Sleeman, D., Brown, J., eds.: Intelligent Tutoring Systems. Academic Press, Lon-
don (1982)

2. Wenger, E.: Artificial Intelligence and Tutoring Systems. Computational and Cog-
nitive Approaches to the Communication of Knowledge. Morgan Kaufmann Pub-
lishers, Los Altos, California (1987)

3. Munro, A., Surmon, D., Johnson, M., Pizzini, Q., Walker, J.: An open architecture
for simulation-centered tutors. In: Proc. of AIED99: 9th Conference on Artificial
Intelligence in Education, Le Mans, France (1999) 360–67

4. Mendez, G., Rickel, J., de Antonio, A.: Steve meets jack: the integration of an
intelligent tutor and a virtual environment with planning capabilities. In: 4th
Intl. Working Conf. on Intelligent Virtual Agents (IVA03). Volume 2792 of LNAI.,
Kloster Irsee, Germany, Springer-Verlag (September 2003) 325–332

5. Mendez, G., Herrero, P., de Antonio, A.: Intelligent virtual environments for train-
ing in nuclear power plants. In: Proc. of the 6th Intl. Conf. on Enterprise Infor-
mation Systems (ICEIS 2004), Porto, Portugal (April 2004)

6. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12(3) (July 2003) 317–370

7. Mendez, G., de Antonio, A.: Training agents: an architecture for reusability. In:
5th International Working Conference on Intelligent Virtual Agents. Volume 3661
of LNAI., Springer-Verlag (2005) 1–14



8. de Antonio, A., Ramirez, J., Mendez, G.: An Agent-Based Architecture for Virtual
Environments for Training. In: Developing Future Interactive Systems. Idea Group
(2005) 212–233

9. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3-4) (1971) 189–208

10. Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, W., Wu, D., F.Yaman: Shop2:
An htn planning system. Journal of Artificial Intelligence Research (JAIR) 20
(2003) 379–404

11. Wooldridge, M., Jennings, N.R.: Software engineering with agents: Pitfalls and
pratfalls. IEEE Internet Computing 3(3) (May-June 1999) 20–27

12. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. 2nd edn.
SEI Series in Software Engineering. Addison Wesley Professional (2003)

13. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond. 1 edn. The
SEI Series in Software Engineering. Addison Wesley Professional (2002)

14. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures. 1 edn.
The SEI Series in Software Engineering. Addison Wesley Professional (2002)

15. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12) (December 1972) 1053 – 1058

16. Parnas, D.L.: On a ’buzzword’: Hierarchical structure. In: Information Processing
74, Proceedings of IFIP Congress 74. (1974) 336–339

17. Agre, P.E.: Hierarchy and history in simon’s ”architecture of complexity”. Journal
of the Learning Sciences 12(3) (2003) 413–426

18. Liskov, B., Wing, J.: Family values: A behavioral notion of subtyping. Technical
Report MIT/LCS/TR-562b, Cambridge, MA, USA (1993)

19. Hayden, S., Carrick, C., Yang, Q.: Architectural design patterns for multi-agent
coordination. In: Proc. of the 3rd Intl. Conf. on Agent Systems (Agents’99). (1999)

20. los Arcos, J.L., Muller, W., Fuente, O., Ore, L., Arroyo, E., Leaznibarrutia, I.,
Santander, J.: Lahystotrain: Integration of virtual environments and its for surgery
training. In Gauthier, G., Frasson, C., VanLehn, K., eds.: Intelligent Tutoring
Systems (2000). Number 1839 in LNCS, Springer-Verlag (2000) 43–52

21. Rickel, J., Johnson, W.L.: Animated agents for procedural training in virtual
reality: Perception, cognition, and motor control. Applied Artificial Intelligence
13 (1999) 343–382

22. Shaw, E., Johnson, W., Ganeshan, R.: Pedagogical agents on the web. In: Pro-
ceedings of the Third Annual Conference on Autonomous Agents, Seattle, WA,
USA, ACM Press (May 1999) 283–290

23. Lester, J., Voerman, J., Towns, S., Callaway, C.: Cosmo: A life-like animated
pedagogical agent with deictic believability. In: IJCAI97 Workshop on Animated
Interface Agents: Making them Intelligent, Nagoya, Japan (August 1997)

24. Lester, J., Stone, B., Stelling, G.: Lifelike pedagogical agents for mixed-initiative
problem solving in constructivist learning environments. User Modeling and User-
Adapted Interaction 9(1-2) (1999) 1–44

25. Paiva, A., Machado, I.: Life-long training with vincent, a web-based pedagogical
agent. International Journal of Continuing Engineering Education and Life-Long
Learning 12(1) (2002)

26. Zhang, D., Alem, L., Yacef, K.: Using multi-agent approach for the design of an
intelligent learning environment. In Wayne Wobcke, Maurice Pagnucco, C.Z., ed.:
Proceedings of the Workshops on Commonsense Reasoning, Intelligent Agents, and
Distributed Artificial Intelligence: Agents and Multi-Agent Systems Formalisms,



Methodologies, and Applications. Number 1441 in LNCS, Springer-Verlag (1998)
221–230

27. Webber, C., Pesty, S.: A two-level multi-agent architecture for a distance learning
environment. In de Barros Costa, E., ed.: Workshop on Architectures and Method-
ologies for Building Agent-based Learning Environments (ITS 2002). (2002) 26–38

28. Buche, C., Querrec, R., Loor, P.D., Chevaillier, P.: Mascaret: A pedagogical multi-
agent system for virtual environments for training. International Journal of Dis-
tance Education Technologies 2(4) (2004) 41–61

29. Evers, M., Nijholt, A.: Jacob - an animated instruction agent in virtual reality.
In Tan, T., Shi, Y., Gao, W., eds.: Advances in Multimodal Interfaces - ICMI
2000, Proceedings of the Third International Conference on Multimodal Interfaces.
Number 1948 in LNCS, Springer-Verlag (2000) 526–533

30. Cheikes, B.: Gia: An agent-based architecture for intelligent tutoring systems. In
Finin, T., Mayfield, J., eds.: Proceedings of the CIKM’95 Workshop on Intelligent
Information Agents, Baltimore, Maryland (1995)

31. Genesereth, M.: An agent-based approach to software interoperability. Technical
Report Logic916, Logic Group, Computer Science Department, Stanford University
(1993)

32. Boucke, N., Weyns, D., Schelfthout, K., Holvoet, T.: Applying the atam to an
architecture for decentralized control of a transportation system. In Hofmeister,
C., Crnkovic, I., Reussner, R., Becker, S., eds.: 2nd International Conference on the
Quality of Software Architectures (QoSA). Volume 4214 of LNCS., Springer-Verlag
(2006) 181–199

33. Woods, S.G., Barbacci, M.: Architectural evaluation of collaborative agent-based
systems. Technical Report CMU/SEI-99-TR-025, CMU/SEI (1999)

34. Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., Wood,
B.: Attribute-driven design (add), version 2.0. Technical Report CMU/SEI-2006-
TR-023, CMU/SEI (2006)

35. Herrero, P., de Antonio, A.: Keeping watch: Intelligent virtual agents reflecting
human-like perception in cooperative information systems. In: Proc. of the 11th
Intl. Conf. on Cooperative Information Systems, Springer-Verlag (2003)

36. Imbert, R., de Antonio, A.: Using progressive adaptability against the complexity
of modeling emotionally influenced virtual agents. In: Proc. of the 18th Intl. Conf.
on Computer Animation and Social Agents (CASA 2005). (2005)


