
Training Agents: An Architecture for Reusability

Gonzalo Mendez and Angelica de Antonio

Computer Science School,
Technical University of Madrid,

Campus de Montegancedo s/n, 28660 Boadilla del Monte (Madrid), Spain
gonzalo@gordini.ls.fi.upm.es, angelica@fi.upm.es

Abstract. During the last years, Intelligent Virtual Environments for
Training have become a quite popular application of computer science
to education. These systems involve very different technologies, ranging
from computer graphics to artificial intelligence. However, little attention
has been paid to software engineering issues, and most of these systems
are developed in an ad-hoc way that does not allow the reuse of their
components or even an easy modification of the application. We describe
an agent-based software architecture that is intended to be easily ex-
tended and modified. Also, some experiments to test the suitability of
the architecture are shown.

1 Introduction

Many of the advances in the application of intelligent agents to the field of Intel-
ligent Virtual Environments for Training (IVET) have come from the Artificial
Intelligence community, such as Herman the Bug [1], Cosmo [2] or Steve [3,4].

However, little effort has been devoted to software engineering issues, and in
the few cases where some attention has been paid to design methods, such as in
Jacob [5], they have focused in object oriented design rather than agent oriented
design.

The MAEVIF (Model for the Application of Intelligent Virtual Environments
to Education) project is the result of several experiences integrating virtual en-
vironments and intelligent tutors [6,7] that served to point out the problems
that commonly arise in such integrations. The objective of the MAEVIF project
was to define a model for the application of intelligent virtual environments to
education and training, which involved:

– The definition of a generic model for intelligent learning environments based
on the use of virtual worlds.

– The definition of an open and flexible agent-based software architecture to
support the generic model of an IVET.

– The design and implementation of a prototype authoring tool that simplifies
the development of IVETs, based on the defined architecture.

– The definition of a set of methodological recommendations for the develop-
ment of IVETs.

T. Panayiotopoulos et al. (Eds.): IVA 2005, LNCS 3661, pp. 1–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 G. Mendez and A. de Antonio

In the remainder of this paper it will be described how the traditional archi-
tecture of Intelligent Tutoring Systems (ITS) [8,9] has been extended to support
Virtual Environments (section 2) and how it has been transformed into an agent-
based architecture (section 3). In section 4, an explanation of the functionality of
the authoring tool will be given. Section 5 will present a discussion of the results
that have been achieved with the MAEVIF project. Then, the basic functioning
of the system will be described (section 6), and finally, in section 7, some future
work lines will be shown.

2 An Extension to the Architecture of Intelligent
Tutoring Systems

The development of three dimensional Virtual Environments (VEs) has a quite
short history, dating from the beginning of the 90s. The youth of the field, to-
gether with the complexity and variety of the technologies involved, have led
to a situation in which neither the architectures nor the development processes
have been standardized yet. Therefore, almost every new system is developed
from scratch, in an ad-hoc way, with very specific solutions and monolithic ar-
chitectures, and in many cases forgetting the principles and techniques of the
Software Engineering discipline [10]. Some of the proposed architectures deal
only partially with the problem, since they are centered on a specific aspect like
the visualization of the VE [11,12] or the interaction devices and hardware [13].

Our approach to the definition of an architecture for IVETs is based on the
agent paradigm. The rationale behind this choice is our belief that the design
of highly interactive IVETs populated by intelligent and autonomous or semi-
autonomous entities, in addition to one or more avatars controlled by users,
requires higher level software abstractions. Objects and components are passive
software entities which are not able to exhibit the kind of proactivity and re-
activity that is required in highly interactive environments. Agents, moreover,
are less dependent on other components than objects. An agent that provides
a given service can be replaced by any other agent providing the same service,
or they can even coexist. New agents can be added dynamically providing new
functionalities. Extensibility is one of the most powerful features of agent-based
systems. The way in which agents are designed make them also easier to be
reused than objects.

Since an IVET can be seen as a special kind of ITS, and the pedagogical
agent in an IVET can be seen as an embodiment of the tutoring module of an
ITS, our first approach towards defining an standard architecture for IVETs was
to define an agent for each of the four modules of the generic architecture of an
ITS [9] (see Fig. 1).

The ITS architecture, however, does not fit well with the requirements of
IVETs in several aspects:

– IVETs are usually populated by more than one student, and they are fre-
quently used for team training. An ITS is intended to adapt the teaching



Training Agents: An Architecture for Reusability 3

Fig. 1. Architecture of an ITS

and learning process to the needs of every individual student, but they are
supposed to interact with the system one at a time. However, in a multi-
student IVET, the system has to adapt both to the characteristics of each
individual student and to the characteristics of the team. Consequently, the
student module should model the knowledge of each individual student but
also the collective knowledge of the team.

– The student is not really out of the limits of the ITS, but immersed in
it. The student interacts with the IVET by manipulating an avatar within
the IVET, possibly using complex virtual reality devices. Furthermore, each
student has a different view of the VE depending on their location within it.

– The communication module in an ITS is usually realized by means of a GUI
or a natural language interface that allows the student to communicate with
the system. It would be quite intuitive to consider that the 3D graphical
model is the communication module of an IVET. However, there is a funda-
mental difference among them: in an IVET, the learning goals are directly
related to the manipulation and interaction with the 3D environment, while
the communication module of a classical ITS is just a means, not an end.
Therefore, the ITS needs to have explicit knowledge about the 3D VE, its
state, and the possibilities of interaction within it.

As a first step we decided to modify and extend the ITS architecture by
considering some additional modules. First of all, we split the communication
module into a set of different views for all the students with a particular com-
munication thread for each student, and a centralized communication module to
integrate the different communication threads. Then, we added a world module,
which contains geometrical and semantic information about the 3D graphical
representation of the VE and its inhabitants, as well as information about the
interaction possibilities. The tutoring module is unique to be able to make deci-
sions that affect all the students, as well as specific tutoring decisions for a certain
student. The expert module contains all the necessary data and inference rules to



4 G. Mendez and A. de Antonio

maintain a simulation of the behavior of the system that is represented through
the VE (e.g. the behavior of a nuclear power plant). The student module, finally,
maintains an individual model for each student as well as a model of the team.

3 An Agent-Based Architecture for IVETs

Taking the extended architecture described in the previous section as a starting
point, the next step is to decide which software agents are necessary to transform
this component-oriented architecture into an agent-oriented architecture, which
has been designed using the GAIA methodology [14]. In this methodology, the
authors suggest the use of the organizational metaphor to design the system
architecture, which basically consists of analyzing the real-world organization
in order to emulate its structure. It is mentioned that this approach does not
always work (depending on particular organization conditions), but in this case,
considering the extended architecture of an ITS as the real world, it seems quite
appropriate to imitate its structure to develop the system architecture.

Figure 2 shows how the extended ITS architecture is transformed, from a
modular point of view, into an agent-based architecture. It has five agents cor-
responding to the five key modules of the extended ITS architecture:

– A Communication Agent
– A Student Modelling Agent
– A World Agent
– An Expert Agent
– A Tutoring Agent

Analyzing the responsibilities of these agents, some additional roles can be
identified that point to the creation of new, subordinate agents that can carry
them out, subsequently giving rise to a hierarchical multi-agent architecture.

3.1 Central Communication Agent

The Central Communication Agent is responsible for the communication be-
tween the Virtual Environment and the Tutoring System. It delegates part of its
responsibilities to a set of Individual Communication Agents dedicated to each
student. There is also a Connection Manager Agent, which is responsible for
coordinating the connections of the students to the system, and a set of Device
Agents in charge of managing the data provided by the devices the students use
to interact with the Virtual Environment.

3.2 Student Modelling Agent

This agent is in charge of maintaining a model of each student, including personal
information, their actions in training sessions, and a model of the students’
knowledge.



Training Agents: An Architecture for Reusability 5

Fig. 2. Agent-based architecture

Figuring out the student’s abilities and beliefs/knowledge is usually not a
trivial issue. To better individualize training and appropriately understand the
student’s behavior, a representation of some of its personal features (personality
traits, mood, attitudes,...) is defined and maintained. To do this, the Student
Modelling Agent is assisted by:

– A Historic Agent, which is responsible for registering the history of interac-
tions among the students and the system.

– A Psychological Agent, which is responsible for building a psychological pro-
file of each student including their learning style, attentiveness, and other
personality traits, moods and emotions that may be interesting for adapting
the teaching process.

– A Knowledge Modelling Agent, which is responsible for building a model of
the student’s current knowledge and its evolution.



6 G. Mendez and A. de Antonio

– A Cognitive Diagnostic Agent, which is responsible for trying to determine
the causes of the student’s mistakes.

3.3 World Agent

The World Agent is in charge of maintaining a coherent model of the VE, so
that all the agents and students have the same information about the state of
the world.

The World Agent is related to:

– The 3D Geometrical Information Agent which has geometrical information
on the objects and the inhabitants of the world. Among other responsibilities,
this agent will answer questions about the location of the objects.

– The Objects and Inhabitants Information Agent, which has semantic knowl-
edge about the objects and the inhabitants of the world. This agent will be
able to answer questions about the utility of the objects or the objects being
carried by a student.

– The Interaction Agent, which has knowledge about the possible actions that
the students can perform in the environment and the effects of these actions.
It will be able to answer questions like ”What will it happen if I push this
button?”

– The Path-Planning Agent, which is capable of finding paths to reach a des-
tination point in the environment avoiding collisions with other inhabitants
and objects. For the purpose of finding these paths, the A* algorithm will
be applied to a graph model of the environment.

3.4 Expert Agent

The expert agent contains the expert knowledge about the environment that is
being simulated, as well as the expert knowledge necessary to solve the problems
posed to the student and to reach the desired goals. Most of the activities to be
executed by the students consist of finding an appropriate sequence of actions,
or plan, to go from an initial state of the environment to a desired final state.
These actions have to be executed by the team of students. The Expert Agent
delegates some of its responsibilities to a Simulation Agent, that contains the
knowledge about the simulated system, and a Planning Agent, that is able to
find the best sequence of actions to solve different activities.

The plan for an activity is worked out by the Planning Agent with the col-
laboration of three other agents:

– The Path-Planning Agent can determine whether there is a trajectory from
a certain point of the world to another one.

– The Interaction Agent provides information about the actions that a student
can directly execute in the environment.



Training Agents: An Architecture for Reusability 7

– The Simulation Agent provides information about some high-level actions
that can be executed over the simulated system (e.g., a nuclear power plant).
One of these high-level actions will typically require the execution of one or
more student’s actions; therefore, a hierarchical planning will be performed.
In the nuclear power plant domain, an example of a high-level action may be
to raise the reactor’s temperature. This high-level action would be decom-
posed into two student actions, go to the control panel and press the button
that closes the input water valve.

3.5 Tutoring Agent

It is responsible for proposing activities to the students, monitoring their actions
in the virtual environment, checking if they are valid or not with respect to
the plan worked out by the Expert Agent, and making tutoring decisions. The
activities that can be proposed by the Tutoring Agent are dependent on the
particular environment that is being simulated in the IVET, and they can be
defined by means of an authoring tool. Some XML files will define the activities
in the IVET, the characters that should take part in them and the role to be
performed by each character.

The adaptation of the tutoring strategy to every particular student may also
encompass how the virtual tutor will behave: a student may need a tutor with
a particular character (e.g., training children may require a funny, enthusiastic
tutor, while for training nuclear power plant operators a more serious one will be
more convenient), or with a specific mood (e.g., if a student does not pay much
attention to the procedure for long, a disgusted tutor may be effective). Poor or
upsetting tutor behaviors will lead to a lack of believability, possibly reducing
the student’s feeling of presence and therefore the effectiveness of the training.

The Tutoring Agent is assisted by a Curriculum Agent, which has knowledge
of the curricular structure of the subject matter, and several Tutoring Strategy
Agents, which implement different tutoring strategies.

3.6 Communication with the Virtual Environment

Currently, the proposed architecture has been implemented using JADE (Java
Agent DEvelopment Framework), while the VE has been built using C++ and
OpenGL. The communication between the agents and the VE is made using a
CORBA middleware, which has allowed us to distribute the different elements
of the training application in different machines (see Fig. 3).

When the application is started, a few general-purpose objects are created
that allow the communication of events that affect all users. In addition, when
a student connects to a training session, some specifical objects are created, too,
so that the communication that only affects that student can be carried out.
Every time a message has to be sent from the VE to JADE, the appropriate
object receives the information that has to be transmitted.

Some information has to be exchanged between the different VE clients that
correspond to each student, such as changes in the positions of the avatars and
objects. Microsoft’s DirectPlay library has been used with this purpose.



8 G. Mendez and A. de Antonio

Fig. 3. CORBA communication architecture

4 Authoring Tool

The architecture that has been described in the previous sections has allowed
us to build a basic infrastructure of agents that work as a runtime engine. One
of the main goals of this architecture is for it to be flexible enough, so it can
be used for different kinds of training in heterogeneous environments without
having to extensively modify it.

This can be done by changing the knowledge and goals that the agents have
according to the different training needs. To ease this task, an authoring tool
has been developed to help human tutors to design new training courses.

The authoring tool allows the human tutor to load an existing 3D environ-
ment in which the training process will take place. This environment is typically
created using 3DStudio Max or a similar application, and is then exported to
the format that has been created for the MAEVIF system. A script has been
created to be used with 3DStudio with this purpose.

The human tutor can then select the objects with which the students will be
able to interact, and he can define the different actions that can be carried out
with each object (e.g. take, drop, use, open, put on...) and all the aspects related
to those actions (e.g. pre-conditions, post-conditions, parameters, animations
that must be triggered...). These actions are stored in an xml file that is read
by the appropriate agents when a training scenario of the MAEVIF system is
started.



Training Agents: An Architecture for Reusability 9

Subsequently, the author can create new training activities. To do this, he
has to decide how many students have to take part in the activity, what their
initial positions are in the virtual environment, what goals they must achieve,
and the initial state of the world. This information is also stored in an xml file
that is read by the Tutoring agent when a training scenario is started.

In turn, some variables of the initial state will be generated randomly every
time the students have to train the activity, so that they can solve the same
problem starting from different situations.

The authoring tool also generates the world map that is used by the A*
algorithm for the path-planning task. To do this, all the objects that are present
in the VE are projected on the floor of the scenario, which is divided in cells.
All the cells are marked as occupied by an object or free, and these free cells are
used by the A* algorithm to calculate the best route between two points.

As a prototype application of our tool we have developed a training system
for Nuclear Power Plants operators. We had previously developed this system
from scratch in 1999, during a one year period. The re-development using our
infrastructure has just taken a few weeks, and the achieved functionality is su-
perior. For instance, the previous implementation was for a single user, the tutor
was not embodied, and the communication tutor-student was restricted to cor-
rection feedback.

5 Discussion

All along the design and development of the described architecture, one of the
aspects that has had a bigger impact on it has been the planning process, since,
due to the fact that it is a collaborative process, a change in the planning method
or in the way that knowledge is represented may imply changes in all the agents
that take part in it. At the beginning, a simple STRIPS (STanford Research
Institute Problem Solver) planner [15] was implemented, but we are currently
working on the utilization of a new planner based on SHOP2 (Simple Hierarchical
Ordered Planner 2 ) [16] or LPG (Local search in Planning Graphs) [17]. This
change involves the substitution of the planning agent, but it may cause changes
in the Interaction, Simulation and Path-Planning agents, which also take part
in the planning task.

However, there are two factors that suggest that collaborative planning is the
adequate solution. The first one is the fact that, given a planning algorithm, our
solution allows for the real-time inclusion of new agents with different knowledge
that can help to solve a problem. In addition, a careful design of the operators
and their responsibilities can minimize the impact of a change in the planning
algorithm or in the knowledge representation.

Another aspect we have tested is how easy it is to add new functionality
to the IVET. To do this, we have added an embodied tutor whose goal is to
observe what happens in the VE and follow the student to supervise him. It has
been necessary to add two new agents, namely the Virtual Tutor agent, whose
responsibility is to control the 3D representation of the tutor (its embodiment),



10 G. Mendez and A. de Antonio

and the Perception agent, who is in charge of monitoring the events of the virtual
world. Both of them are under the supervision of the World agent.

It has been quite easy to make these changes, since the Perception agent
can ask the World agent for the information it needs and, according to this
information, the Virtual Tutor agent can decide how to follow the student and
send commands to its 3D representation through the communication agents.
Neither the World agent nor the Communication agent have needed further
changes.

Finally, we have tested the difficulty of using the described system in a com-
pletely different environment, and even with a different purpose. We have de-
signed an experiment where a group of zebras have to drink water in a river,
trying to avoid being eaten by a lion, but also trying not to die of thirst. In this
case, the Perception and Virtual Tutor agents are in charge of controlling the
zebras and lions, and the Tutoring agent is responsible for deciding what to do
according to their state of thirst and hunger, assisted by the Planning agent.
Some of the existing agents, such as the Simulation agent, have been removed,
since their functionality was not required. However, some of the agents play a
role that is significantly different than the one they were originally thought to
play, so if they are to be used in such a way, the architecture will probably have
to be modified.

As a result, we can conclude that the architecture has successfully supported
the experiments, and has proven to be flexible and extensible enough to allow
changes and extensions without having to be redesigned.

5.1 Performance Issues

Performance is always an important issue in applications where real-time ex-
ecution is needed, and agent-based architectures tend to easily raise concerns
about this matter. Using an individual agent for each high-level responsibility
may seem an unnecessary waste of processing capacity.

Even though our main concern were the software engineering issues, such as
extensibility and reusability, we have devoted some effort to identify bottlenecks
in terms of performance, given that the architecture will be useless if it can be
used due to performance issues.

Three potential sources of problems have been identified: rendering, commu-
nications and agent platform, and they have been tested using different config-
urations (vg. agent platform running in one machine, one VE running in one
machine, agent platform and one VE running in one machine, agent platform
running in one machine and several VEs running in different machines). The
results we have obtained show that the architecture does not influence much the
performance of the system.

In contrast, it seems to be the network communication what lowers the exe-
cution speed, and the more students there are, the slower the application runs.
This effect can be appreciated since the first student connects to the training ses-
sion, which is leading us to redesign the communication mechanism to improve
this aspect.



Training Agents: An Architecture for Reusability 11

6 How the System Works

In this section, a sample training session with one student will be presented. The
student is a maintenance operator in a Nuclear Power Plant who has to learn
how to change a filter that divides two sections of a pipe.

During the training, when an activity is posed to the student, the Planning
agent builds the plan that leads to the resolution of the activity, given the initial
state at that moment and the desired final state of the world. Moreover, during
the planning process, the Path-Planning agent computes the ideal trajectories
through the geometric representation of the environment that the students must
follow to accomplish the plan.

In order to learn this activity, the student must carry it out in the virtual
environment. Not knowing what to do, the student uses a voice recognition
system to ask the tutor “What should I do now?” (the student can ask some
other questions, such as “What is this for?”, “What happens if I. . . ?”, “What
should I have done?”). The question is sent to the tutoring system, and the
Tutoring agent identifies it is a question he is in charge to answer. He asks the
Planning agent for the next action in the plan, builds the answer and sends it
to the student who, through a text-to-speech application, hears the tutor saying
“You have to remove the filter”.

The student tries to carry out the action remove filter. To do it, using a data
glove, he touches the filter to select it and says “remove”. When this happens, the
Individual Communication agent associated with the student receives a message
and informs about this attempt to the Central Communication agent; eventually,
the message is delivered to the Tutoring agent.

Now, the Tutoring agent needs to find out whether the action can be executed
under the current conditions in the virtual world, that is, if the preconditions of
the action hold. For that, the Tutoring agent resorts to the Interaction agent,
since remove filter is an action in this level of abstraction. The Interaction Agent
determines that he needs to check whether the student’s avatar is close enough
to the filter and if he is carrying the appropriate tools in order to remove it.
To check these preconditions, the Interaction agent writes them in a blackboard
that is used as a communication mechanism between agents. The 3D Geometri-
cal Information agent and the Objects and Inhabitants Information agent read
the blackboard and see there are preconditions they are able to check. Each
precondition corresponds to one and only one of the aforementioned agents.

If all the preconditions of the action hold, the Interaction agent must guar-
antee the execution of the consequences of the action. For that, it may need to
delegate some responsibilities on other agents, such as the World agent and the
Simulation agent, using the blackboard again as a communication mechanism.
One of the consequences, managed by the Interaction Agent itself, will be launch-
ing a 3D animation in the virtual world that represents the student removing
the filter. The command is sent to the VE via the Communication agents (in
case there are several students, this message is sent to all the students, since all
the students should see the animation).



12 G. Mendez and A. de Antonio

Fig. 4. The MAEVIF system

When the Tutoring agent receives the result of verifying the preconditions
of the action from the Interaction agent, it asks the Student Modelling agent to
register the action and the result of the verification, and it checks whether the
executed action is valid with respect to the plan associated with the activity. If
this action is the next correct action according to the plan, the Tutoring Agent
asks the Student Modelling agent to register that the student has carried out the
correct action. Otherwise, the Tutoring agent allows the student to go on in spite
of having executed an incorrect action. This strategy poses a new problem, since
the Tutoring Agent needs to know whether the desired final state is reachable
from the current state of the world. To find this out, the Planning agent must
be endowed with the capacity of re-planning.

The movements of the student in the virtual world are considered a special
kind of action that is managed in a different manner to the one explained above.
As the student moves through the environment, the Central Communication
agent informs the 3D Geometrical Information Agent of the new student’s posi-
tions. At the same time, the Tutoring agent asks the 3D Geometrical Information
agent for these positions, in order to compare them with the trajectory provided
by the Path-Planning agent, and to inform the Student Modelling agent so that
it can store the trajectory followed by the student during the training session.
As a result of the comparison between the ideal trajectory and the student’s
trajectory, a quality measure of the student’s trajectory is calculated by the
Path-Planning agent and then stored by the Student Modelling agent.

All through the training, the virtual tutor, controlled by the Virtual Tutor
agent, follows the student in order to supervise his actions and correct them.



Training Agents: An Architecture for Reusability 13

7 Future Work

As it has been mentioned previously, one of the elements that can affect more
deeply the system architecture is the planning process. In addition, the STRIPS
planning algorithm has been used as a testbed for the Planning Agent, but it
lacks a lot of features that would be desirable in an IVET, such as arithmetic
operations or concurrent actions. Therefore, other planning algorithms are being
evaluated, because of their improved functionality, but also to test their impact
in the system architecture.

Another research is being carried out in parallel to design an architecture for
the cognition of intelligent agents, with reactive, deliberative and social capabil-
ities, and it is planned to use that architecture for the Virtual Tutor and any
other cognitive agents that may be required (such as zebras, lions or simulated
students).

It is mainly in the context of nuclear power plants where we have been
applying our prototypes. Up to now, the Simulation agent hasn’t played a very
active role. Therefore, we are in the process of applying the system to other
environments where the simulation agent is more complex, so that it can be
tested whether its design is adequate or it needs to be modified.

Finally, the Student Modelling group of agents have been subject to less
experimentation than the rest, since its behaviour is quite complex from the
pedagogical point of view. Therefore, a research line has been established to
fully understand its implications and to modify the architecture where needed.

Acknowledgements. This research has been funded by the Spanish Ministry of
Science and Technology through the MAEVIF project under contract TIC2000-
1346.

References

1. Lester, J.C., Stone, B.A.: Increasing believability in animated pedagogical agents.
In: Proceedings of the First International Conference on Autonomous Agents, ACM
Press (1997) 16–21

2. Lester, J.C., Voerman, J.L., Towns, S.G., Callaway, C.B.: Deictic believability: Co-
ordinating gesture, locomotion, and speech in lifelike pedagogical agents. Applied
Artificial Intelligence 13 (1999) 383–414

3. Rickel, J., Johnson, W.L.: Animated agents for procedural training in virtual
reality: Perception, cognition, and motor control. Applied Artificial Intelligence
13 (1999) 343–382

4. Rickel, J., Johnson, W.L.: Virtual humans for team training in virtual reality.
In: Proceedings of the Ninth International Conference on Artificial Intelligence in
Education, IOS Press (1999) 578–585

5. Evers, M., Nijholt, A.: Jacob - an animated instruction agent for virtual reality. In:
Advances in Multimodal Interfaces - ICMI 2000, Third International Conference.
Volume 1948 of LNCS., Beijing, China, Springer-Verlag (2000) 526–532



14 G. Mendez and A. de Antonio

6. Mendez, G., Rickel, J., de Antonio, A.: Steve meets jack: the integration of an
intelligent tutor and a virtual environment with planning capabilities. In: 4th
International Working Conference on Intelligent Virtual Agents (IVA03). Volume
2792 of LNCS-LNAI., Kloster Irsee, Germany, Springer-Verlag (2003) 325–332

7. Mendez, G., Herrero, P., de Antonio, A.: Intelligent virtual environments for train-
ing in nuclear power plants. In: Proceedings of the 6th International Conference
on Enterprise Information Systems (ICEIS 2004), Porto, Portugal (2004)

8. Sleeman, D., Brown, J., eds.: Intelligent Tutoring Systems. Academic Press, Lon-
don (1982)

9. Wenger, E.: Artificial Intelligence and Tutoring Systems. Computational and Cog-
nitive Approaches to the Communication of Knowledge. Morgan Kaufmann Pub-
lishers, Los Altos, California (1987)

10. Munro, A., Surmon, D., Johnson, M., Pizzini, Q., Walker, J.: An open architec-
ture for simulation-centered tutors. In: Artificial Intelligence in Education. Open
Learning Environments: New Compu-tational Technologies to Support Learning,
Exploration and Collaboration. (Proceedings of AIED99: 9th Con-ference on Ar-
tificial Intelligence in Education), Le Mans, France (1999) 360–67

11. Alpdemir, M., Zobel, R.: A component-based animation framework for devs-based
simulation environments. In: Simulation: Past, Present and Future. 12th European
Simulation Multiconference. (1998)

12. Demyunck, K., Broeckhove, J., Arickx, F.: Real-time visualization of complex sim-
ulations using veplatform software. In: Simulation in Industry’99. 11th European
Simulation Symposium (ESS’99). (1999) 329–33

13. Darken, R., Tonessen, C., Passarella, J.: The bridge between developers and virtual
environments: a robust virtual environment system architecture. In: Proceedings
of the SPIE - The International Society for Optical Engineering. Volume 2409.
(1995) 234–40

14. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12 (2003) 317–370

15. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2 (1971) 189–208

16. Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, W., Wu, D., F.Yaman: Shop2:
An htn planning system. Journal of Artificial Intelligence Research (JAIR) 20
(2003) 379–404

17. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and
temporal action graphs. Journal of Artificial Intelligence Research (JAIR) 20
(2003) 239–290


	Introduction
	An Extension to the Architecture of Intelligent Tutoring Systems
	An Agent-Based Architecture for IVETs
	Central Communication Agent
	Student Modelling Agent
	World Agent
	Expert Agent
	Tutoring Agent
	Communication with the Virtual Environment

	Authoring Tool
	Discussion
	Performance Issues

	How the System Works
	Future Work

