
SIAPAS: A Case Study on the Use of a
GPS-Based Parking System

Gonzalo Mendez1, Pilar Herrero2, and Ramon Valladares2

1 Facultad de Informatica - Universidad Complutense de Madrid
C/ Prof. Jose Garcia Santesmases s/n, 28040 Madrid, Spain

gmendez@fdi.ucm.es
2 Facultad de Informatica - Universidad Politecnica de Madrid

Campus de Montegancedo s/n, 28660 Boadilla del Monte (Madrid), Spain
pherrero@fi.upm.es

Abstract. GPS-based applications have become very popular during
the last years, specially among drivers, who use them to find the best
way to their destination. However, their use is still far from taking ad-
vantage of the wide range of possibilities that GPS offers. The SIAPAS
application goes one step further by adding new functionality to the typ-
ical GPS-based map. SIAPAS runs on a PDA and it allows drivers to
find a parking space that suits their needs inside a parking lot. This pa-
per describes how the system has been designed and implemented, and
shows the results of some experiments that have been carried out to test
its utility and usability.

1 Introduction

Finding a parking space is a common challenge faced by millions of citizens every
day. Let’s imagine a driver who arrives to a shopping center looking for the
place to park his car. Let’s also imagine that the shopping center is on sale and
therefore it is bursting with people. If the user needs to buy something quickly,
something that he forgot the previous day when he did his weekly shopping, and
he is also in a hurry because he just quit from his job for a few minutes, he would
need extra help to find the best parking-position. The driver is not concerned
with the shopping center entrances that are far away from his current location,
rather he wants to choose one from several entrances near his current location
and, if possible, closer to the requested shop.

A location-based application could help to this user with this problem as
it would guide him depending on his current location. A crucial part of this
location-based application is locating users’ current location. Global Positioning
System (GPS) is a widely used technology for this purpose and it is constantly
being improved. With the advances in GPS and wireless communications tech-
nology and the growing popularity of mobile devices, such as PDA, the need for
location-based applications has gained significant attentions.

In the last few years some similar projects have been developed in many dif-
ferent places with many different purposes. In fact, an overview of ad-hoc routing



Fig. 1. Module-level system architecture

protocols that make forwarding decisions based on the geographical position of
a packet’s destination is presented in [1].

One of these projects is the one developed as a part of the digital campus
project at the University of California, NAPA (Nearest Available Parking lot
Application). This application, which finds an empty space from multiple park-
ing lots scattered around a campus or some area like a city or an airport, is
intended to reduce the bottleneck at the campus entrance, which is often a time
consuming process in itself [2]. Another one is PMNET, a multi-hop wireless
parking meter network that allows users to locate and navigate to an available
parking space by equipping existing parking meters with wireless radio frequency
(RF) transceivers and auxiliary hardware and software [3]. However, although
both projects are similar in intentions, SIAPAS goes one step forward as it offers
not just a location for the driver’s car, but the best one: closer to the closest
entrance of the shopping center.

In this paper, we will show how the system has been designed (Section 2)
and we will give a few details about the implementation (Section 3). Then, we
will describe how the system has been tested and evaluated (Section 4) and we
will end with the conclusions we have obtained (Section 5).

2 System Design

The SIAPAS system has been designed as a set of independent modules that
communicate with each other through the use of web services (see Fig. 1).

• M1 - Communications: this module keeps track of the state of the parking
spaces.



• M2 - GPS: it keeps track of the car’s current position, minimizing the GPS
position error.

• M3 - Voice: speech-based driver’s assistance.
• M4 - GUI: it manages user interaction.
• M5 - Outside Parking Manager: this module controls the global parking

state.
• M6 - Inside Parking Manager: it keeps track of the parking state: parking

spaces, routes, entrance and the like.
• M7 - Configuration: it manages the GPS device configuration.

This division in modules is based not only on functionality reasons for each
device, but also in the global functionality. Thus, there may be parts of the same
module running in different devices.

2.1 M1 - Communications

This module consists of two parts (a client and a server) that communicate with
each other through a WiFi network using SOAP.

The server side is based on an agent who is in charge of managing the clients’
petitions to block and release parking spaces, keeping the ontology that is used
to represent the parking state up to date. The clients can block the parking space
they want to use so that no other driver can use it. To avoid the parking spaces
being blocked without a car occupying them for too long, the agent is also in
charge of releasing the ones that have been blocked for more than a predefined
time (currently 30 minutes).

The client runs in the drivers’s PDA, and it starts working as soon as the
GPS detects that the car is inside the parking lot. It first requests the parking
state, and then it blocks the parking space to be used to park the car.

2.2 M2 - GPS

This module is in charge of receiving data from the GPS system and preparing
them to be used by the rest of the SIAPAS application. It is structured as a
conventional compiler, with a component to read data and detect lexical errors,
another one to parse the sentences and a third one to obtain position and preci-
sion data and prepare them to be used by other parts of the application, usually
to update the state of close parking lots or to update the drivers’ position inside
the parking.

2.3 M3 - Voice

The Voice module was originally part of the Inside Parking Manager, but it was
separated from it due to its complexity and different nature.

It has been divided in two submodules. The first one is in charge of analyzing
the route that the driver must follow and create a list of events where some
instruction must be told to the driver. These events include turning left and



Fig. 2. Inside Parking Manager GUI

right and parking. The second submodule is in charge of checking, every time a
GPS signal is received, whether the car is close to a mark where some instruction
must be given to the driver and activate the speech synthesizer.

2.4 M4 - GUI

This module provides a graphical user interface for three of the modules that
form the SIAPAS application: Inside and Outside Parking Managers and Con-
figuration.

For the Configuration Module, the GUI offers the possibility to change the
communication port with the GPS device, the communication speed and the
protocol to be used to communicate with the GPS.

The GUI of the Outside Parking Manager is the default screen that users see
when they are not in a parking that is controlled by SIAPAS. In this screen the
user can see which are the closest parkings, how far they are from the user and
in what direction.

As for the Inside Parking Manager, the necessary data to draw the parkings
are stored in an ontology in this module. These data are related to the parking
itself (lanes, entrances and exits and parking spaces) and to the vehicle’s position.
Fig. 2 shows the aspect of this GUI, where the user can typically see: the parking
lanes painted in brown; the parking spaces in green (free), red (occupied) or
maroon (blocked); the vehicle, as a white circle with an arrow point inside if it is
moving or a dot if it is stopped; and the route to the closest free parking space
painted with a grey line.



Fig. 3. Inside Parking Manager Ontology Structure

2.5 M5 - Outside Parking Manager

This module is in charge of maintaining the ontology that stores the information
about the parkings that can work with the SIAPAS system. The ontology stores
the name, location and size of the parking, and it is used to infer where the
closest parking is or how to get there.

The ontology is updated every time the driver is close to a parking that is
managed by the SIAPAS system. In addition, inferences are carried out after a
predefined time (currently, 3 seconds) when a GPS signal is received, so the cur-
rent distance or location of all parkings can be updated. The format to represent
latitude and longitude is dd.mmmmmm, using a WGS84 datum. The distance
is calculated using Vicenty’s formula [4].

2.6 M6 - Inside Parking Manager

The Inside Parking Manager is in charge of controlling what happens inside a
parking, so it manages information about parking spaces, lanes and routes from
one place inside the parking to another. We have used an ontology to represent
this information, the structure of which can be seen in Fig. 3.

This module starts its execution when the car is close to a parking. It retrieves
all the information related to the state of the parking spaces and lanes inside
the parking, and it uses a slight variation of Dijkstra’s algorithm [5] to figure
out the most suitable parking space. Once it has been found, the Inside Parking
Manager checks periodically that the driver is following the right route. If this
is not the case, it calculates a new route to the parking space.

2.7 M7 - Configuration

This module is in charge of managing information about the GPS hardware that
is used by the system. Currently, the information that is used is the communica-
tion port (COM1 to COM6), the port speed (from 2400 bauds to 115200 bauds)
and the communication protocol (only NMEA, for the moment).



When the application is launched, it reads the configuration file and tries to
establish a connection with the GPS hardware. If the configuration is wrong or
the PDA is using the chosen port for some other purpose, all the user will see is
a message saying that there is no GPS signal available. If the user changes the
configuration, the application will try to open the selected port. If it is success-
ful, it writes the new configuration data in the configuration file; otherwise, no
changes are made.

3 Implementation

The client side of the SIAPAS system runs on a Pocket PC that uses Microsoft
Windows CE as Operating System. Among the different options that exist to
develop software for this platform, Microsoft Visual Studio .NET 2003 has been
chosen as the development environment, especially due to its good integration
with the execution environment.

There are several options to implement a sockets-based communication be-
tween the clients and the server. The C++ Sockets Library has been chosen
because it is object oriented and internally it makes use of POSIX libraries.

Finally, to develop the GUI there is the possibility to make use of the libraries
provided by the .NET Compact Framework, a reduced set of GDI (Graphics
Device Interface). Although this was the first choice, it soon became obvious
that the possibilities it offers are quite low. Therefore, after analyzing different
alternatives, OpenNETCF was chosen to substitute GDI, mainly because it is
quite similar to GDI and easy to use (although the performance is not as good
as, for example, that of GAPI).

4 Evaluation

One of the main objectives of this project is to develop an application that
can be used in a short period of time, so a lot of stress has been imposed over
the evaluation of SIAPAS to make sure it will be useful for the final user. The
evaluation method that has been used is described in [6], and it basically consists
of a theoretical validation, scenario validation and user validation.

4.1 Theoretical Validation

For the theoretical validation, the objective has been to test that the mathemat-
ical basis used in the application is accurate enough for the application to be
useful. Three different experiments have been run.

Experiment 1 - Distance accuracy Both Vicenty’s formula and the Haver-
sine formula have been used to measure distance accuracy. Vicenty’s method
shows that, using a WGS84 datum, longitude and latitude precision should be
of 0.00005”.



Fig. 4. Experiment 2 - Parking Structure

We have tested the algorithms running 27 tests with different data. For two
points situated less than 100 meters far from each other, both methods showed
a difference in measure that ranged between 1 centimeter and 51 centimeters,
which can be considered a very good precision for this kind of application.

Experiment 2 - Closest entrance selection The objective of this exper-
iment has been to determine whether Dijkstra’s algorithm always selects the
closest entrance to the building or not. Fig. 4 shows the elements of the experi-
ment, where the graph shows the parking structure, E1 and E2 are the different
entrances to the building and the X shows the position of the car.

We have run 25 different tests, changing the position of the car, E1 and E2.
In all the tests, the distance of the route selected by the algorithm was slightly
shorter than the real distance travelled by the car, being the mean deviation of
5.02%.

Experiment 3 - Closest parking space selection In this experiment, the
main objective is to test that the chosen parking space is the closest one to the
building and that it is the one that most people would choose. The structure
os the parking is the same as in the previous experiment (see Fig. 4), and the
location of the parking spaces can be seen in Fig. 5. Each one of the 25 tests that
have been run in this experiment is a continuation of the corresponding test run
for Experiment 2.



Fig. 5. Experiment 3 - Parking Spaces Location

After running the tests, each of the solutions have been evaluated according
to what a user would think of it (this has been done by the same person who
ran the tests; the results of the user validation will be shown later in this paper).
The values used have been: totally disagree, slightly disagree, agree, quite agree,
totally agree. Then, a numerical value ranging from 1 to 5 has been given to
each of the options, and the resulting average was 4.65. This average shows that,
most of the times, we believe a human user would think he would have chosen
the same parking space.

4.2 Scenario Validation

In this validation, the objective has been to test that the SIAPAS application
offers a practical solution to the previous experiments. Fig. 6 shows the struc-
ture of the parking, where the stars mark the entrance to the building and the
rectangles show the parking spaces.

We have run 26 tests, changing the position of the car and the free parking
spaces, and the results have been evaluated the same way it was done in Exper-
iment 3. This time, the obtained average has been 4.58, which is quite close to
the previous result.

After running this test, we can see that the experimental results obtained
using SIAPAS are the ones expected after running the theoretical validation,
and the system has shown that most of the times it is able to find the most



Fig. 6. Parking Structure for the Scenario Validation

suitable parking space for a driver. This point will be effectively evaluated in the
next validation.

4.3 User Validation

This validation has been carried out using the Performance Measure technique
[7]. Three groups of five people were made to be able to compare whether the
results depended a lot on the kind of user or not:

• Users between 21 and 26 years old with low skills using hardware and soft-
ware.

• Users between 24 and 25 years old with an average level experience using
PCs.

• Users between 21 and 28 years old with high skills using PCs, PDAs and
GPS applications.

Each user had to park his car twice, first without using SIAPAS and then
using it, and we measured the time it took since they got into the car till they
arrived walking to the building entrance. After that, the users had to fill in a
questionnaire about their opinion of the system.

In most cases, it took shorter to park using SIAPAS, although the differences
in time ranged between 6 and 112 seconds, being the average difference of 28
seconds.

The analysis of the results of the questionnaire showed that all the users
thought the system was easy to use, even the ones without experience, but they
also agreed in the need to provide a more user-friendly GUI, and specially in the
level of detail of the parking representation.



5 Conclusions

Finding a parking space is a common challenge faced by thousands of people
every day. Wireless ad-hoc networking technologies offer a new and efficient
means to simplify the parking process. In this paper we have described a GPS-
based application (SIAPAS) that allows a user to quickly locate and drive to an
available parking space.

Our solution is achieved by equipping drivers with a PDA to navigate in the
area. The results of the evaluation that has been carried out point out that the
system is accurate enough to be useful, which has been confirmed by the people
who have taken part in the experiments: in their opinion, the system is useful
and easy to use, although some improvements need to be made in the GUI for
the application to be a little more user-friendly.

References

1. Mauve, M., Widner, J., , Hartenstein, H.: A survey on position-based routing in
mobile ad-hoc networks. IEEE Network 15 (2001) 30–39

2. Chon, H.D., Agrawal, D., Abbadi, A.E.: Napa: Nearest available parking lot appli-
cation. In: Proceedings of the 18th International Conference on Data Engineering
(ICDE’02), IEEE (2002) 496–497

3. Basu, P., Little, T.: Networked parking spaces: Architecture and applications. In:
Proceedings of the IEEE Vehicular Transpotation Conference, IEEE (2002) 1153–
1157

4. Vicenty, T.: Direct and inverse solutions on the ellipsoid with application of nested
equations. Survey Review XXII (1975) 88–93

5. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press
(1990)

6. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer
Academic Publishers (2001)

7. Dumas, J.: A Practical Guide to Usability Testing. Intelect (1999)


