
A SOFTWARE ARCHITECTURE FOR INTELLIGENT VIRTUAL ENVIRONMENTS 
APPLIED TO EDUCATION 

Angélica de Antonio1     Jaime Ramírez2     Ricardo Imbert3     Gonzalo Méndez4     Raúl Antonio Aguilar5 

ABSTRACT 

This paper describes the software architecture that has been designed as a model for the application of Intelligent 
Virtual Environments to training activities. CORBA has been used as the middleware to integrate a graphical and 
interactive environment developed in OpenGL and Visual C++, with a cooperative multi-agent system developed on top 
of the JADE platform. 

Keywords: Virtual Environments, Intelligent Tutoring Systems, Intelligent Virtual Training Environments, 
Agent Based Systems, Intelligent Virtual Agents 

 

                                                           
1 Facultad de Informática, Universidad Politécnica de Madrid, Campus Montegancedo, 28660 Boadilla del Monte, 
Madrid, España. angelica@fi.upm.es 

2 jramirez@fi.upm.es 
3 rimbert@fi.upm.es 
4 gonzalo@gordini.fi.upm.es 
5 raguilar@bermudas.fi.upm.es 

INTRODUCTION 

The use of Virtual Environments (VEs) for training is a 
promising option for educational activities, especially in 
those situations where traditional education can be costly, 
dangerous or even impossible to realize.   

The combination of VEs with Intelligent Systems, and 
mainly Agent-based Systems, is giving rise to a new 
category of software usually referred to as Intelligent 
Virtual Environments (IVEs) [1]. A special case of those 
are the systems that combine a VE with an Intelligent 
Tutoring System (ITS) and are applied to training. They 
will be called Intelligent Virtual Environments for 
Training (IVETs) [9]. In IVETs, the tutoring process 
embedded in the system sometimes adopts, just like the 
learners, a virtual representation within the VE. Virtual 
characters representing the tutoring component of IVETs 
are usually referred to as Pedagogic Agents [6], given that 
they are usually designed and architected as intelligent 
software agents [7]. 

From the Software Engineering point of view, there are 
very few methodological proposals for the development 
of virtual reality-based environments [5,11]. Moreover, 
very few tools and platforms are available to support the 
development of IVETs. These are very complex systems 
in which it is necessary to combine advanced graphical 
capabilities, interaction management through complex 
virtual reality devices, distributed multi-user 

communication, and intelligent components to assist 
learners in their learning process. The complexity and 
heterogeneity inherent in IVETs calls for open and 
flexible architectures [10] that allow a smooth integration 
of components and subsystems possibly developed with 
different technologies, as well as improved extensibility 
and maintainability. 

This paper describes the subsystems and the software 
architecture underlying a platform for the development of 
IVETs that has been created in the Decoroso Crespo 
Laboratory at the Universidad Politécnica de Madrid 
(UPM). This work has been partially funded by the 
Spanish Ministry of Science and Technology under grant 
TIC00-1346. 

THE MAEVIF PROJECT 

The MAEVIF project (Model for the Application of 
Intelligent Virtual Environments to Education – in 
Spanish “Modelo para la Aplicación de Entornos 
Virtuales a la Formación”) started on December 2000. 
The general goal of the project was the definition of a 
model for the application of IVEs and IVAs to education. 
This implied several tasks including: 

• The definition of a generic model for IVETs.  
• The definition of an open and flexible 

architecture, based on components, to support 
the previously defined generic model. 

mailto:angelica@fi.upm.es


• The development of a prototype platform and 
an experimental IVET to test the model and 
architecture. 

This paper focuses on the software architecture and its 
current implementation and the way in which various 
heterogeneous components and technologies have been 
integrated to provide a common ground for the 
development of present and future IVETs. 

MAEVIF is basically composed of two subsystems. The 
first one deals with the graphical visualization of the 
virtual environments and the interaction with the learners. 
The second subsystem is a multi-agent system designed to 
provide “intelligence” to the tutoring system. The 
following sections describe both subsystems in detail and 
the way in which these quite different approaches to 
software have been integrated through a standard for 
distributed objects. 

A GRAPHICS AND INTERACTION SUBSYSTEM 
FOR IVETS 

The generic model for IVETs that has been considered is 
oriented towards training applications in which one or 
more learners have to learn to interact with the 
surrounding environment and between them, in the 
execution of a cooperative task with a shared goal. The 
need for the learners to interact with the environment as 
part of their task leads to and justifies the use of a virtual 
reality system. Virtual reality technologies range from the 
most expensive and immersive devices, such as CAVEs, 
head mounted displays (HMDs), motion tracking 
systems, or data gloves, to the more economical but least 
immersive interaction means commonly used in desktop 
configurations (mouse, monitor, joystick and keyboard). 
The objective was to select an approach that was valid for 
any logical combination of interaction devices, being 
open to the needs and possibilities of many different types 
of users. The more immersive is the combination of 
interaction devices available for the learner, the more 
realistic will be the learning experience. 

For the development of the graphics and interaction 
subsystem (GIS) to be used by the learners, a variety of 
technologies are required. Graphics technologies are 
necessary for the creation and rendering of the scene to be 
perceived by each learner during the training activities. 
Each learner will be represented in the environment by a 
virtual character, an avatar, so that, in every moment, the 
view that the learner has over the environment will 
correspond to what his/her avatar “sees” through its 
virtual eyes. The environment, the objects within it, and 
the avatars, have to be created as three dimensional 
models, trying to find a proper balance between realism 
and simplicity for real-time rendering. In the MAEVIF 
prototype, 3D Studio Max has been used for this purpose, 
but similar tools could also be used. The resulting models 

need to be translated into a textual file format that has 
been defined in MAEVIF. A translator for 3D Studio Max 
has already been implemented. If other 3D modeling tools 
were to be used, new specific translators would have to be 
developed.  

The graphics and interaction subsystem is able to load, 
render and animate any environment and its objects, 
provided that they are in the defined MAEVIF format, 
using the OpenGL graphic libraries. This subsystem has 
been implemented in Microsoft Visual C++, and it also 
makes use of some of the Microsoft DirectX libraries. In 
particular, DirectPlay is used for direct communication 
between the different learner applications that are 
connected to the same environment in any given moment. 
In this way, with a peer-to-peer approach, the movements 
of the avatars that represent the learners are 
communicated to the other learner views, in order to 
update their corresponding rendered scenes. Microsoft’s 
DirectInput has also been used to manage conventional 
interaction devices (keyboard and joystick). For more 
advanced virtual reality devices, special libraries have 
been designed to act as intermediaries and avoid a direct 
coupling of the subsystem with the specific drivers 
provided by the devices’ vendors. Finally, the GIS also 
makes use of IBM’s Via Voice to allow voice synthesis 
and recognition.  Just as it was the case with the creation 
of 3D models and animations, the combination of 
languages, libraries and tools that has been selected for 
the implementation of the GIS could be replaced by other 
analogous technologies, such as Java (instead of C++), 
Java3D (instead of OpenGL), Dragon NaturallySpeaking 
or VoiceXpress (instead of ViaVoice), OpenPlay (instead 
of DirectPlay), etc. 

Figure 1 shows the different packages that compose the 
GIS and their interdependencies. They will be explained 
in the following paragraphs.  

Scenario Package. It deals with the rendering and 
continuous update of the virtual world. It also captures all 
events coming to the GIS from the learner and the 
operating system (timers, etc.) and retransmits these 
events to the Manager Package. MFC (Microsoft 
Foundation Classes) classes are used to implement a 
graphical user interface (GUI) that allows the learner to 
interact with the system. 

Devices Package. It manages the initialization, polling 
and interfacing with the different interaction devices 
offered to the learners. It is the package that encapsulates 
and hides the details of the specific device drivers. 

Communications Package. It has the responsibility of 
coordinating the different views that different learners 
have over the same virtual environment, depending on the 
position of their avatars in the world. It is the package that 
makes use of the DirectPlay libraries. This package is also 
responsible of the communication with the multi-agent 
tutoring subsystem, via a CORBA middleware. 



World Package. Its classes maintain geometrical 
information about all the objects in the environment. 

Scenario

Communications

Manager

World

Interaction Device

Devices

Multi-Agent Tutoring 
Subsystem

Learner

Other Learner's GIS

Fig. 1. Packages in the graphics and interaction subsystem 
of MAEVIF 

 
Manager Package. It is the core of the GIS. Using the 

classes in the Scenario, Devices and Communications 
Packages, gathers and interprets all the events that have 
an effect on the virtual world, which is updated via the 
classes in the World Package. 

The ultimate goal of conventional and/or not conventional 
interaction devices in an IVET is allowing the learner to 
navigate through the environment and to interact with the 
objects and other entities in the world. These interactions 

will have effects on the environment and system that is 
being simulated. For instance, if the virtual environment 
reproduces the control room of a nuclear power plant, the 
push of a button by the learner could provoke the opening 
of a valve and the change in the color of an indicator. 
Consequently, the IVET should maintain knowledge 
about the interaction possibilities and their effects on the 
visual representation of the environment and on the 
underlying simulated system. This knowledge will also be 
used by the multi-agent tutoring subsystem to build action 
plans, provide explanations, answer questions coming 
from the learner, and other processes. 

In order to manage navigation, three generic variables 
have been defined: position, orientation and viewpoint of 
the learner’s avatar. In order to manage interaction, two 
additional variables are considered: position and 
orientation of the avatar’s hand. Each of these variables 
can be controlled by different types of device inputs. The 
Manager Package is in charge of making the translation 
from the inputs that come from the devices to the 
pertinent modifications of the variables.  

However, even if MAEVIF is open to almost any 
combination of devices, there are some possibilities that 
do not make sense and are not allowed. For instance, if a 
learner wishes to use a HMD to visualize the environment 
and a motion tracking system to determine his/her head’s 
position and orientation, it would be cumbersome to use a 
keyboard to generate other events, such as actions on the 
objects; first, because he/she would not see the keyboard, 
and second, because he/she would be physically moving 
around to navigate through the environment. 

In the MAEVIF prototype, the selection of a navigation 
device conditions the possible devices that are allowed for 
other actions. Table 1 shows the feasible interaction 
options that are currently supported by MAEVIF.  

 
Table 1. Feasible Combinations of Interaction Devices. 

 
Viewpoint  Hand Navigation 

HMD 
(with position 

sensor) 

Joystick Keyboard  Data glove Keyboard 

HMD      
Joystick      

Keyboard       
 



As it can be seen in figure 2, regardless of the selected 
devices, the view that a learner gets from the environment 
in a training session is a first person view. The learner 
will observe a 3D environment with objects (some of 
them can be manipulated and others cannot), avatars 
representing other learners, and a special virtual character 
that represents his/her virtual tutor. He/she will also see 
the right hand of his/her own avatar, allowing him/her to 
point to virtual objects (to ask a question about them to 
his/her virtual tutor, for instance) and to interact with 
them (to pick up an object, to push a button, to open a 
door, etc.). The manipulable objects and the interaction 
possibilities will be dependent on the particular 
environment that is being simulated in the IVET. This 
information can be associated to the different IVETs in 
the MAEVIF platform by means of an authoring tool. 
Several XML files are generated by this tool containing 
this information. 
 

 
Fig. 2. View that a learner has of the virtual environment 

in which he/she is immersed 

AN AGENT-BASED ARCHITECTURE FOR THE 
TUTORING SUBSYSTEM 

The decision of using multi-agent technology for the 
design of the tutoring subsystem relies on the belief that 
that the design of highly interactive IVETs populated by 
intelligent and autonomous or semi-autonomous entities, 
in addition to one or more avatars controlled by users, 
requires highest level software abstractions. Objects and 
components (CORBA or COM-like components) are 
passive software entities which are not able to exhibit the 
kind of pro-activity and reactivity that is required in 
highly interactive environments. Agents, moreover, are 
less dependent on other components than objects. An 
agent that provides a given service can be replaced by any 
other agent providing the same service, or they can even 
co-exist, without having to recompile or even to reinitiate 
the system. New agents can be added dynamically 
providing new functionalities. Extensibility is one of the 
most powerful features of agent-based systems. The way 
in which agents are designed make them also easier to be 
reused than objects. 

The first step in the design of the Multi-Agent Tutoring 
Subsystem (MATS) was the reinterpretation of the 
traditional architecture for ITSs (composed of Expert, 
Student, Tutoring and Communication modules) as an 
architecture based on cooperative agents. The first 
problem was that the traditional ITS architecture was 
meant for a single learner interacting with his/her tutor, 
while MAEVIF was going to allow distributed multiple 
learners inhabiting the same environment and interacting 
with the environment, between them, and with their 
virtual tutors. On the other hand, the 3D environment and 
its inhabitants could not be considered any more as an 
external Communication Module through which the 
student interfaces with his/her tutor. The students and the 
tutor are in fact immersed and they are part of the 
environment. The complex network of possible 
interactions together with the fact that the students 
become a part of the interface, lead us to a modification in 
the original ITS architecture to count for multiple learners 
and immersive 3D environments. The Student Module 
was split into several Individual Learner Modules and one 
Team Module. An additional module was also defined, 
called World Module that should contain geometric and 
semantic information about the environment and its 
objects, its inhabitants, and its interaction possibilities. 

Afterwards, a representative agent for each of the five 
modules in the extended ITS architecture was designed: 

• Expert Agent 
• Tutoring Agent 
• Communication Agent 
• Student Modeling Agent 
• World Agent 

Then, the responsibilities for the representative agents 
were defined, as well as the interaction and 
communication scenarios between them. Some 
subordinate agents were then associated to the 
representative agents. They can delegate some of their 
responsibilities and specific tasks on these subordinate 
agents. The resulting multi-agent architecture is described 
in [2]. 

For the implementation of this multi-agent architecture, 
the JADE platform (Java Agent Development 
Framework) has been used. JADE sticks to the FIPA 
(Foundation for Intelligent Physical Agents) 
specifications for the development of intelligent software 
agents. Individual agents are programmed in Java. Here, 
again, other agent platforms could have been used (FIPA-
OS, Zeus, etc.). 

An incremental and evolutionary approach to 
development has been selected for MAEVIF. The current 
prototype implements a subset of the complete 
architecture that can be seen in figure 3. The functionality 
of these agents is briefly described next. 

 



 

Simulation Agent

Planning Agent 

Tutoring Agent

Individual 
Communication Agent 1

Graphical and
Interaction Ss,

Graphical and
Interaction Ss,

Interaction 
Devices

Interaction 
Devices

Action Agent 

Trajectory Agent  

Learner 1 Learner N

Virtual Tutor 
Agent 1

Virtual Tutor 
Agent N

Perception 
Agent  

Expert Agent 

World Agent

Global Communication
Agent

Student Agent 1 

Student Agent N 

Student Agent 

Individual 
Communication Agent N

 
Fig. 3. MAEVIF Multi-agent Architecture 

 

Initiation Agent. It is an auxiliary agent responsible 
for the creation of the necessary objects and containers 
upon the initiation of the system, after the agent server 
has been launched.  

Global Communication Agent. It is in charge of the 
channeling the communication between the MATS and 
the different GIS running on the learners’ machines.  

Individual Communication Agents. Each learner, 
upon connecting to the system, will be assigned an 
Individual Communication Agent in charge of 
transmitting messages from the learner’s GIS to the 
MATS and vice versa. For instance, it will inform the 
MATS of the virtual character that has been selected by 
a learner in a certain activity and of the actions that the 
learner is trying to execute, and it will communicate to 
the GIS the verbal messages to be synthesized coming 
from his/her virtual tutor (clues, answers to the student’s 
questions, etc.), the animations to be performed by the 
virtual tutor, etc.  

Notification Agent. Given that JADE agents can only 
send to and receive messages from other agents, the 
communication between the GIS and the MATS had to 
be performed using a temporal agent that is created 
whenever a message has to be sent to the MATS and is 
destroyed afterwards.  

Tutoring Agent. It is responsible for proposing 
activities to the learners, monitoring their actions in the 
virtual environment, checking if they are valid or not, 

and making tutoring decisions. The activities that can be 
proposed by the Tutoring Agent are dependent on the 
particular environment that is being simulated in the 
IVET, and they can also be defined through the 
authoring tool. Some XML files define the activities in 
the IVET, the characters that should take part on them, 
and the role to be performed by each character. 

Expert Agent. The expert agents will contain the 
expert knowledge about the system that is being 
simulated, as well as the expert knowledge necessary to 
solve problems and to reach the desired goals. Most of 
the activities to be posed to the learners, in the generic 
model of an IVET that is being considered, will consist 
of finding an appropriate sequence of actions to go from 
an initial state of the simulated system and the 
environment to a desired final state. These actions will 
have to be executed by the team of learners. The expert 
agent will delegate on a Simulation Agent, that contains 
the knowledge about the simulated system, a Planning 
Agent, that is able to find the best sequence of actions to 
solve different activities. The Simulation Agent in the 
prototype IVET was so simple that their functions are 
currently performed by the Expert Agent. The 
Trajectory Agent is currently able to compare the paths 
followed by the learners with predefined trajectories 
(stored in XML files and defined with the authoring 
tool) and an algorithm to compute best paths, which is 
based on the A* algorithm, is being implemented.  



World Agent. It maintains information about all the 
virtual objects, manipulable or not (name, position, 
size), as well as about all the learners immersed in the 
environment (name, position, orientation, carried 
objects in their inventory, virtual character selected by 
the student for the activity,...). This agent is able to 
verify conditions on the state of the environment, and 
update this state according to the consequences of the 
actions executed by the learners.  

Action Agent. It owns the knowledge about the 
actions that can be performed on the virtual objects in 
the environment. It cooperates with the Planning Agent 
(by means of a blackboard structure) to build solution 
plans. During the simulation of an activity, it is 
responsible of checking if the preconditions associated 
to the actions that a learner is trying to execute really 
hold, and it is also responsible of coordinating the 
execution of all the consequences associated to those 
actions (in cooperation with other agents). 

Trajectory Agent. It is able to find the best path to go 
from a certain position in the environment to a selected 
destination and to compare the best trajectory with the 
path followed by a learner, communicating the results to 
the Tutoring Agent.  

Perception Agent. A model for visual perception in 
virtual intelligent agents [4] has been implemented. This 
model allows the virtual tutors to perceive the 
surrounding environment in a way inspired by the 
human perceptual system. The Perception Agent 
receives from the World Agent information about the 
position and size of the objects in the environment 
(maintaining some geometric entities called nimbus) and 
about the position and viewpoint of the virtual tutors 
(maintaining other geometric entities called focus). 
Using these entities, the Perception Agent is able to 
calculate what a virtual tutor can see in a given moment 
and with which clarity of perception [3].  

Virtual Tutor Agent. This agent is responsible for 
controlling the actions of the characters associated to the 
virtual tutors. Each learner will have his/her own virtual 
tutor. In the current prototype virtual tutors only have a 
simple behavior of following the learners in their way 
through the environment, keeping at a proper distance to 
observe their actions.  

Student Agents. These agents are in charge of 
maintaining a model of each learner, including personal 
information, their actions in training sessions, and a 
model of the learners’ knowledge. In the current 
prototype the student model is maintained in a 
combination of XML files and a database. 

A DISTRIBUTED SOFTWARE ARCHITECTURE 

The subsystems integrating MAEVIF software 
architecture have developed with heterogeneous 
technologies and languages. The goal was to benefit 
from the specific features of these technologies 
according to the required functionalities. On one there is 
a multi-agent subsystem that benefits from the features 
offered by the JADE platform. On the other hand there 
is a graphics and interaction subsystem that benefits 
from different libraries and drivers available for the 
management of graphics and interaction devices.  

This section details the way in which both subsystems 
have been integrated in an architectural solution that is 
open and flexible. CORBA (Common Object Request 
Broker Architecture), one of the most used standards for 
the development of distributed components, has been 
used for this purpose.  

CORBA provides a specification for the management of 
distributed objects, by means of a bus (Object Request 
Broker: ORB) through which objects written in different 
languages and residing on different networks and 
operating systems, can interoperate [4]. Of the variety of 
services offered by CORBA, MAEVIF relies mainly on 
its Name Service, which allows linking an object with a 
name in order to be able to locate the object by its name 
afterwards. Figure 4 shows the subsystems in 
MAEVIF’s system architecture. 
 

Voice Recognition 
1 

Graphical and Interaction  
Subsystem (GIS) 1 Voice Recognition 

N 

Graphical and Interaction  
Subsystem (GIS) N 

ORB 

DirectPlay 

Multi-agent Tutoring 
System (MATS) 

Name Server 

 
Fig. 4. MAEVIF’s System Architecture 

 
MAEVIF is a multi-user system, therefore the CORBA 
objects cannot be assigned a specific name, because that 
could lead to name conflicts between the objects created 
for different learners. To solve this problem, a Name 
Server developed by Orbacus that allows the definition 
of hierarchical name contexts has been used. Figure 5 
shows the context structure defined for MAEVIF. 

 



 

ROOT

Name Server

Activator Semantic World

User 1 User N

Recognizer Notificator JavaResponse

Informer Question Character

ROOT

Name Server

Activator Semantic World

User 1 User N

Recognizer Notificator JavaResponse

Informer Question Character

 
Fig. 5. Name contexts structure in MAEVIF 

 
CORBA objects for MAEVIF fall into two categories:  

 
• Servers. These are objects that offer a set of 

well defined services to other CORBA objects. 
In MAEVIF there are global servers as well as 
specific servers for each learner. Table 2 shows 
the server objects in MAEVIF. 

• Clients. These are objects that are in charge of 
maintaining references to server objects 
registered in the name server, sending requests 
to them, receiving the responses and providing 
the answers to the associated subsystem 
making transparent the fact that server 
components are distributed. MAEVIF client 
objects are: 

o Associated to the GIS: Activator, 
Informer, Character. 

o Associated to the MATS: World, 
Semantic, Notificator, Response. 

o Associated to the Voice Engine: 
Recognizer, Semantic, Informer, 
Question. 

Table 2. Server objects registered in the MAEVIF name 
server 
 

Subsys
tem 

Server Object Description 

GIS Global World It is an access point to 
consult information about the 
objects in the virtual 
environment. 

  Semantic It manages all the 
information about 
manipulable objects in the 
virtual environment. 

 Learner Response It informs the virtual 
environment about the 
answers to the questions 
formulated by the learner 
through the voice recognition 
system. 

  Recogni-
zer 

It allows the communication 
between the GIS and the 
voice recognition system. 

  Notifica-
tor 

It provides access to the GIS 
associated to an individual 
learner for the MATS to 
communicate modifications 
on it. 

MATS Global Activator It manages the connections 
of learners and synchronizes 
the MATS with the first GIS 
that is activated.  

 Learner Informer It manages the learner’s data 
and informs the MATS about 
the learner’s actions in the 
virtual world. 

  Question It sends to the MATS the 
questions formulated by the 
learner. 

  Character It informs the MATS about 
the character selected by the 
learner among the available 
characters in one activity.. 

 

Generally speaking the procedure to initiate a training 
session in MAEVIF includes the following steps: 

1. Initiate the Orbacus name server in one 
machine and port. 

2. Initiate the JADE platform with the necessary 
agents for the session, in the same or in other 
machine. 

3. Open an instance of the GIS in each of the 
machines that will be used by the team of 
learners.  

4. Activate the voice recognition system in the 
machines of those learners that want to use it as 
an interaction device. 

CONCLUSIONS AND FUTURE WORK 

A system and software architecture has been devised to 
facilitate the development of Intelligent Virtual Training 
Environments (IVETs). This architecture provides the 
ground for integrating many heterogeneous technologies 
and making them interoperate in a distributed setting. 
The architecture has been devised to be open and 
flexible, and to facilitate the incorporation of new 
components and agents, as well as the use of different 
languages and tools. 

New agents and new functionalities for the existing 
agents are currently being implemented. For the future, 
it would be desirable to improve the effectiveness of the 
IVET through enhanced capabilities of the Pedagogic 
Agents. These agents should be perceived by the 
learners as believable intelligent entities. An open 
research line focuses on the study of the learner-IVET 
interaction and the search for more efficient and 



effective metaphors and navigation and interaction 
mechanisms. 

ACKNOWLEDGEMENTS 

This work has been partly funded by the Spanish 
Ministry of Science and Technology through project 
MAEVIF (TIC00-1346). 

REFERENCES 

[1] Aylett, R. & Luck, M.: Applying Artificial 
Intelligence to Virtual Reality: Intelligent Virtual 
Environments. Applied Artificial Intelligence 14 
(1). (2000) pp. 3-32. 

[2] de Antonio, A., Ramírez, J., Méndez, G.: An 
Agent-based architecture for virtual 
environments for training. In M.I. Sánchez (ed). 
Developing Future Interactive Systems. IDEA 
Group. (2004)  

[3] Hermida, B.: PEVE: Percepción Visual en 
Entornos Virtuales para Entrenamiento. Trabajo 
Fin de Carrera. Facultad de Informática, 
Universidad Politécnica de Madrid. (2004) 

[4] Herrero, P., de Antonio, A.: Diseño de uno 
Modelo de Percepción para Agentes Virtuales 
Inteligentes Basados en el Sistemas de 
Percepción de los Seres Humanos. Revista de la 
Facultad de Ingeniería, U.T.A. Vol. 11, No. 1., 
Arica, Chile (2003) pp. 11-24. 

[5] Fencott, C.: Towards a Design Methodology for 
Virtual Environments. Workshop on User 
Centered Design and Implementation of Virtual 
Environments. University of York. (1999) 

[6] Johnson, W.; Rickel, J. & Lester, J.: Animated 
Pedagogical Agents: Face-to-Face Interaction in 
Interactive Learning Environments. International 
Journal of  AIED (2000) 

[7] Giraffa, L. & Viccari, R.: Intelligent Tutoring 
Systems Built Using Agents Techniques. La 
Salle, Revista de Educación, Ciencia y Cultura. 4 
(1), Canoas: Brasil (1999) 

[8] López, G., Salas, M., Siles, R., Soriano, F.J.: 
Arquitectura de Objetos Distribuidos CORBA. 
Facultad de Informática. Universidad Politécnica 
de Madrid. (2000) 

[9] Méndez, G., de Antonio, A., Herrero, P.: Prvir: 
An Integration Between an Intelligent Tutoring 
System and A Virtual Environmente.In SCI 
2001.Volume VIII. Orlando, FL, IIIS, IEEE 
Computer Society (2001) pp. 175-180. 

[10] Munro, A., Surmon, D.S., Johnson, M.C., 
Pizzini, Q.A., & Walker, J.P.: An Open 
Architecture for Simulation-Centered Tutors. 
Open Learning Environments: New 
Computational Technologies to Support 

Learning, Exploration and Collaboration. 9th 
Conference on AIDED, Le Mans, France. (1999) 
pp. 360-367. 

[11] Sánchez, M.I.: Una Aproximación Metodológica 
al Desarrollo de Entornos Virtuales. Tesis 
Doctoral. Facultad de Informática, Universidad 
Politécnica de Madrid. (2001) 


