Name:

C.S. 1 Constructors Lab 2

Open the Shapes project. Right click on the Square diagram and select Open Editor

This is the source code for the Square object. You will notice that all the attributes listed in the
Object Inspector are there.

Scroll down slightly — Under the attributes is the constructor for the Square object. Its
signature is: public Square () .

Scroll down until you see public void moveRight ()

What method does moveright () invoke?
How many pixels does the object move?
Change the code so that object moves twice that amount.

Click on the Compile button on the top. Since you have changed the code you have to have
the computer “translate” (compile) the new code.

Test your new code by creating a new Square object. Invoke its Object Inspector. Check the
xPosition attribute before and after invoking its moveright () method.

Let's automate exercise 6 from Lab 1.

Code below should look similar to what you wrote for exercise 6. Type this code in-between
the public square () method and the public void makevisible () method. See the board for
more instructions.

/*
* Automate exercise 6 on Lab 1
*/

public void exerciseé6 ()

erase () ;
changeSize(?)
moveVertical (?
moveHorizontal (
draw () ;
slowMoveHorizontal (?);

; //change each ? to what you wrote yesterday

7

)
?)

}

After you type this you must compile (1% button on the top) your new code. If there are any
mistakes there will be an error message at the bottom. The error made most often is to forget
to place a semi-colon (;) at then end of each line.

Instantiate a new square object and invoke your new exercises () method. If the square
diagram is cross hatched and does not list new square (), you must choose the compile option.

Modify the exercise6() method so that the square makes a complete lap of the canvas. This
code will be handed in.

Overloaded Constructors

Right now the Square class has a default constructor (a constructor with no parameters) whose
signature is public class Square (). Wouldn't it be nice to have the ability to place our square
where we would like it to start? We can do this by supplying another constructor. Our only constraint
is the number of parameters for each constructor we write must be different. i.e. each constructor’s
signature must be different. That way the compiler can tell which one we wish to use.

e Enter the below code under the default constructor.

/**
* Create a new square with default color that starts at xStart, yStart.
*/
public Square (int xStart, int yStart)
size = 30;
xPosition = xStart;
yPosition = yStart;
color = "red";
isVisible = true;
draw () ;

}

¢ Instantiate a new Square object using our overloaded constructor and verify that it works.

4. Write a new constructor that allows you to enter the starting position, the color, and the size.
(This code will be handed in.)
e Use the signature below:

public Square (int xStart, int yStart, String startColor, int startSize)

¢ Verify that your constructor works by instantiating 4 new Square objects at each corner of the
canvas. These objects should all be different colors and different sizes.

5. After we instantiate any object, we always have to make it visible. What a pain! Take a look
at the source code for the method makevisible (). Modify each of your constructors so that
they will be visible to start.

6. Write a new method called, relay (), that takes 4 squares, all size 10, of different colors,
positioned at the corners of the canvas before re1ay ()is invoked, and simulates a relay race.
Use the signature below.

public void relay(Square nw, Square ne, Square se, Sguare sw)

