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NONLOCALITY:
IN SPACE : Long Range Interactions (Many Space Scales)
IN TIME : Effects with Memory / Delay (Many Time Scales)

INTEGRODIFFERENTIAL // INTEGRAL EQUATIONS

Scenarios of Integral Equations

Potential Theory: Newton’s inverse square law of gravitational attraction and
Coulomb’s law in electromagnetism.

Problems in Geophysics: Three dimensional map of Earth’s interior.
Gravimetric methods.

Problems in Electricity and Magnetism.

Hereditary Phenomena in Physics (materials with memory; hysteresis) and
Biology (ecological processes: accumulation of metals).

Problems in Population Growth and Industrial Replacement.
Radiation Problems.

Optimization, Automatic Control Systems.

Communication Theory.

Mathematical Economics.



PHYSICAL CONTEXTS WITH THE SAME EQUATION
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WAVES + FRACTALS - FRACTIONAL CALCULUS (1)

« XIX Century: James Clerk Maxwell and Lor Rayleigh
studied the interaction of electromagnetic waves with
Euclidean regular structures (cilinders, spheres,...).

« There are either nonregular artificial structures or from
Nature that show many lenght scales and they are no
suitable to be studied in the Euclidean context:

* Nonregular surfaces, disordered media, structures
with specific properties of scattering,..ctc.

* Relation between the geometrical parameters
(structure descriptors) and the physical quantities
that characterize electromagnetically the system.

» Tecnology: New space and time scales.



WAVES + FRACTALS - FRACTIONAL CALCULUS (2)

* Geometrical Optics:

 Wave length A<<<< Dimension of any change in the media.
The eikonal is not longer valid.

 The Geometrical Optics cannot be applied in fractal media.

* Stationary eigenvalue problem:
— Wave equation in a fractal potential.
— Wave equation with fractal boundary conditions:
Ex. Lu=Au

-L is a linear differential operator on R" with boundary conditions
u,(x) on a non-differentiable surface but which admits the fractional
derivative DP with  <1.

- If we define ® =D -1 u , we have the problem L ® =)\ ® with the
boundary condition ®(x), being ® differentiable

The new boundary problem is smooth!



Application: Distribution of Suspended Particles in the Atmosphere
+ Radiation Effects

e The family of fractional differential equations

Dfu(t,x)—a D’u(t,x)=0 , t>0, xeR,
associated to diffusion pocesses allows to define a set of probability
distributions which are an analytic instrument to approximate the study
of problems as particles suspended in the atmosphere, radiation,..etc

* To characterize the influence on the radiation arriving to the
Earth surface (dispersion + absorption =2 Optical Depth t(J)
is a measure of the radiation damping)

« Example: Junge Distribution N(z,a)= C(z,a) a1*) where
— 2 IS the high in the atmosphere; a is the size particles
(tipically for aerosols 0.01-10 um ); and 2 <v <4

— C(z,a) is a scale factor depending on the particle
concentration.

— o(A)=k A



Mars Exploration

* REMS-MSL Project (Approved)
(Rover Environmental Monitoring Station — Mars Science Laboratory)
NASA Mission to Mars (2009, 20112)
— Models of the Boundary Layer and Martian Atmosphere
Pressure, Humidity, Temperature (Air and Ground), UV Radiation
and Wind.
—M.P. Zorzano, A.M. Mancho and L. Vazquez: Appl. Math. and
Comp. 164, 263-274 (2005).
M. P. Zorzano and L. Vazquez: Optics Letters 31, 1420-1423 (2006).
L. Vazquez, M.P. Zorzano and S. Jiménez: Optics Letters 32, 2596-2598 (2007)

 MiniHUM Project (Approved)
ESA Mission to Mars (2011,2013?)
—Models of diffusion processes in the Martian Ground

» METNET (Meteorological Network) Project
— Precursor: 2 Stations (2009, 2011?) (Approved)
— Global: 15 Stations (2015?) (Evaluation Process)



Basic Considerations (1)

* Fundamental Theorem of Calculus:
— dX/dt =F(t) , X(0) =Xo
l
X(t) = Xo + fot 1 F(t)dr
l
X(t)=Xo + |t K(t-t) F(1)dr
Question:
Integral Transform < Fractional Derivative ?

* Roots in the Complex Plane:
x’=1— R;,R,, R,



Basic Considerations (2)

* Numerical Schemes for Systems of first and
second order:

— dX/dt =F(X) , X(0) =Xo
l
— d2X/dt2 =F(X) dX/dt = F(X) F'(X) = 1/2 dF(X)%/dX

l
Newton Equation: &’X/dt? = G(X) = - dU(X)/dX

» U(X) = Potential Energy — U(X) = -1/2 F(X)?

yy Conservative Schemes, Symplectic Schemes.



CONTINUOUS MEDIA THEORY:
TIMOSHENKO EQUATION-(1)

04l Ox*-(a? +b2) ¢ | 0x2 08 +a b2 ol '+ a? ¢? D2¢l HP=0

* Flexural vibrations of an infinite uniform beam free from lateral
loading and including the shear deflection of the beam:
— 1/a has the dimension of a velocity.
— 1/b has the dimension of a velocity and it is related to the shear
modulus of elesticity.

— ¢=1/R, R is the radius of gyration of the cross section.

 The Timoshenko equation was introduced to avoid the unphysical
behaviour of the Rayleigh equation a? ¢? 6’/ 0 + ¢*¢/ ox*= 0,
which is not accurate to describe the effect of impact loads on a
beam: the phase and group velocities tend to infinity as the wave
length tend to zero.

» =Kk2?/ac



CONTINUOUS MEDIA THEORY:
TIMOSHENKO EQUATION-(2)

04l Ox*-(a? +b2) ¢ | 0x2 08 +a b2 ol '+ a? ¢? D2¢l HP=0

If a=b the square root of Timoshenko equation has a
simple algebraic structure:

* iacdp/ ot= a’d*¢/ or - 0*¢l ox?
We can name this equation:
Schrodinger—Klein-Gordon equation
 The dispersion relation is: ® = (k*- 4’ ®?) /ac

Relativistic and nonrelativistic properties.

If aZb the algebraic structure is more complicated.



Fractional Diffusion Equation
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We can interpret it as a system with two coupled diffusion processes or

a diffusion process with internal degrees of freedom.

The components ¢ and 7y satisfy the classical diffusion equation and
they are named difunors in analogy with the spinors of Quantum
Mechanics.

It is other panoramic view of the possible interpolations between the
hyperbolic operator of the wave equation and the parabolic one of the
classical diffusion equation.

According to the representation of the Pauli algebra of A and B, we
have either an uncoupled system or a coupled system of equations.
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Time Inversion (t—>-t)

If a=1 we have the Dirac and wave equations which are
invariant under time inversion.

If a=Y% the classical diffusion equation and its square root
are not invariants under time inversion.

Interpolation for : 0< o0 < 1. The invariance under time
inversion 1s satisfied for

 Dirac Fractional Equation:
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 Diffusion Fractional Equation:
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Space-Time Inversion (x—>-x, t—>-t)
 Both equations are invariants under space inversion.
 Interpolation : 0< a < 1. The invariance under space-time
inversion 1s satisfied for the same values of o 1n both
equations:

The fractional Dirac equation is not invariant under time
traslations due to the nonlocal behaviour of the fractional
time derivative.



OTHER FRACTIONAL DIFFERENTIAL EQUATIONS WITH
INTERNAL DEGREES OF FREEDOM:
The 1/3-root of the Wave and Diffusion Equations

 Wave Equation:
P3P + Q23¢=0

« Diffusion Equation:
Po,Bg + Qo3¢=0
c P3=1,Q3=-I
« PPQ+PQP+QPP=0;QQP+QPQ+PQQ=0,

* A possible realization is in terms of the matrices 3x3 associated to
the Silvester Algebra:

Where: 0O 01 0 0 1
P=10? 0 0 Q=Q [0 0 0
0 o 0 0 0 0

being ® a cubic root of unity and €2 a cubic root of the negative

unity.
* @ has three components
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