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Abstract We study the dynamics of a simple sys-

tem with backlash and impacts. Both the presence or

the absence of fluid friction is considered. The fluid

friction is modeled by a fractional derivative, but it

is also shown how an inhomogeneous time scale, al-

though not arising from a fractional differential equa-

tion, may lead to some features similar to fractional

solutions.

Keywords Backlash . Fractional dynamics .
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1. Introduction

Mechanical devices with backlash and impacts play

an important role in technology (see for example

[1–3]). Due to their nonlinear or piecewise linear char-

acteristics, even simple systems may display com-

plex dynamical behavior. Gearboxes, for example,
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may display either regular vibrations or chaotic mo-

tions depending on the system parameters [4–9]. Re-

cently it has been pointed out [10] that this type

of systems might also be analyzed in the perspec-

tive of fractional calculus. The fractional nature of

the dynamics in these systems would explain the

improved effectiveness of fractional-order controllers

[11,12].

Fractional calculus, a well developed mathematical

field, has recently found a growing range of applica-

tions in physics and engineering [13–22].

Here we study a simple system with backlash and

impacts to identify the origin and nature of its dy-

namics. In the system we consider both the pres-

ence or the absence of fluid friction, to exhibit the

way in which either a fractional derivative or a time

inhomogeneity appear in the description of the sys-

tem. We also point out how an inhomogeneous time

scale, although not arising from a fractional differential

equation, displays some features similar to fractional

solutions.

2. A dynamical backlash system with fluid
friction

We consider the system with backlash and impacts de-

picted in the Fig. 1. On the bodies 1 and 2 act a (driving

force) force F1 and a (load) force F2. Between impacts

body 1 moves in a Newtonian viscous fluid. The mass
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Fig. 1 A dynamical backlash system with impacts and fluid
friction

M2 includes the mass of the fluid as well. At the k-th

impact

v1 (k+) − v2 (k+) = −ε (v1 (k−) − v2 (k−))

M1v1 (k+) + M2v2 (k+) = M1v1 (k−) + M2v2 (k−)

(1)

v1,2(k−) and v1,2(k+) being the velocities before and

after the impact and ε ∈ [0, 1] the inelasticity coeffi-

cient.

From (1) it follows

v1 (k+) = (1 − εμ) v1 (k−) + (1 + ε) μv2 (k−)

1 + μ

v2 (k+) = (1 + ε) v1 (k−) + (μ − ε) v2 (k−)

1 + μ

(2)

with μ = M2

M1
.

In-between impacts body 1 is subject to friction aris-

ing from the shear stress of the fluid [18]

σ (t, z) = −√
νρ

1

� (1/2)

∂

∂t

∫ t

0

v (τ, z)

(t − τ )1/2
dτ

= −√
νρD1/2

(t) v2 (t, z) (3)

ν being the viscosity, ρ the fluid density, and v(t, z)

the fluid density at the vertical coordinate z. Applying

the boundary condition v(t, 0) = v2(t) one obtains the

equations of motion for the interval between impacts

M1

dv1(t)

dt
= F1 + 2Aσ (t, 0)

M2

dv2(t)

dt
= F2 − 2Aσ (t, 0)

(4)

A being the effective lateral contact area of body 1.

M1

dv1(t)

dt
= F1 + 2A

√
νρD1/2

(t) v2 (t)

M2

dv2(t)

dt
= F2 − 2A

√
νρD1/2

(t) v2 (t)
(5)

The fractional nature of these equations of motion orig-

inates naturally from the fluid friction. However, a nu-

merical study by Barbosa and Machado [10] of the

Nyquist diagram of a similar system without the fluid

friction and excited by a sinusoidal input force, suggests

that also in this case the dynamics has fractional-order

characteristics. This is somewhat surprising, because

without the fluid friction, the system has a very simple

exponential solution. Here we analyze first this case

to understand where the fractional-like behavior might

come from. It turns out that, rather than originating

from the shear stress of the fluid (as above), it arises

from a non-homogeneous time scale.

2.1. The zero-viscosity limit

Defining sum and difference coordinates

ν− = v1 − v2

ν+ = ν1 + ν2

(6)

let, for simplicity, consider F1 = F2 = 0. Then, from

(1) one obtains

v−(k+) = (−1)kεkv−(0) (7)

v+(k+) = v+(0) + 1 − μ

1 + μ
v−(0) (1 − (−1)kεk) (8)

Hence

v1(k+) = (1 + (−1)kεk)v1(0) + (μ − (−1)kεk)v2(0)

1 + μ

v2(k+) = (1−μ(−1)kεk)v1(0)+μ(1+(−1)kεk)v2(0)

1 + μ

(9)

One sees that the velocities have a simple exponen-

tial dependence on the impact number k and no symp-

tom of fractional behavior. A similar situation occurs if

F1, F2 �= 0. Notice however that the interval between
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impacts is not uniform. Denoting by tk the time of the

k−th impact

tk+1 = tk + L

|v1 (k+) − v2 (k+)| (10)

Then

tk = L(ε−k − 1)

|v1 (0) − v2 (0)| (ε−1 − 1)
(11)

Therefore the evolution of v− (t) in physical time is

v− (tk) = (−1)k v− (0)
1

1 + tk(ε−1−1)v−(0)

L

(12)

Considering the discrete times tk embedded on con-

tinuous time, |v− (tk)| is a discrete version of the solu-

tion of the differential equation

d

dt
f (t) = − α

1 + αt
f (t) (13)

with α = (ε−1−1)v−(0)

L . Hence, in physical time the dif-

ferential behavior is more complex than in impact num-
ber, but it is not fractional. Nevertheless there is a fea-

ture than bears some similarities to a behavior typical

of fractional solutions. It is the non-homogeneity of the

time scale that arises from the dissipation at the impacts

and entails violation of the invariance under time trans-

lations. To understand this fact consider the fractional

integral

(
I β

0+φ
)

(t) = 1

� (β)

∫ t

0

φ (τ ) (t − τ )β−1 dτ (14)

rewritten as

(
I β

0+φ
)
(t) =

∫ t

0

φ(τ )dζt (τ ) (15)

with

ζt (τ ) = 1

� (β + 1)
(tβ − (t − τ )β) (16)

That is, the fractional integral may be interpreted as an

integral over a modified time scale ζt (τ ).

Likewise, Equation (13) may be written in integral

form as

f (t) = f (0) +
∫ t

0

f (τ )dϕ(τ ) (17)

with

ϕ(τ ) = − log(1 + ατ ) (18)

with ϕ (τ ) behaving also as a modified time scale.

Therefore the non-homogeneity of the physical time

scale (as compared to the impact number scale), might

in fact lead this system to have responses, to external

driving forces, bearing some resemblance to fractional

systems. Notice however that there is a fundamental

difference in the modified time scales ζt (τ ) and ϕ (τ ).

This is the dependence on t of ζt (τ ).

2.2. The viscous fluid case

Here we find the solution of the dynamics between

impacts of the full system with external forces and fluid

friction. Let t = 0 be the time immediately after an

impact. Then from (3) and (5) one obtains

v∓(t) = v∓(0) + t

(
F1

M1

± F2

M2

)
−2A

√
νρ

� (1/2)

(
1

M2

± 1

M1

) ∫ t

0

v∓ (τ )

(t − τ )1/2
dτ

(19)

Using the Laplace transform

ν̃∓ (z) = ν̃∓ (0)
1

z
+

(
F1

M1

± F2

M2

)
1

z2

−θ±ν̃∓ (z)
1√
z

(20)

with θ± = 2A
√

νρ( 1
M2

± 1
M1

), leads to

v∓ (t) =
(

F1

M1

± F2

M2

)
1

θ2±

{
2θ±

√
t√

π
− 1 + etθ2

±er f c (θ±
√

t)

}
+ v∓ (0) etθ2

±er f c (θ±
√

t) (21)
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The fractionality of the solution is here quite clear and,

as before, because the time between impacts obtained

from∫ T

0

v− (τ ) dτ = L (22)

is not uniform, there would also be effects arising from

time non-homogeneity.

3. Conclusions

The simple backlash system studied in this paper puts

into evidence both the fractional derivative nature of

some friction phenomena and the fractional-like fea-

tures that arise from an inhomogeneous time scale.

Inhomogeneous time or space scales or, equiva-

lently, coexistence of many different scales are indeed

at the origin of the fractional derivatives modeling of

systems in viscoelasticity and other fields [19–22]. The

emphasis on the inhomogeneity of the integration scale

also provides a nice geometrical interpretation of frac-

tional integration [23], similar to Bullock’s interpreta-

tion of the Riemann-Stieltjes integral [24].

One should notice however that, as seen above, the

fractional integral and fractional derivative represent

only a particular type of inhomogeneous integration

scale. It is therefore conceivable that a more general

framework might be needed to model all kinds of in-

homogeneous scales appearing in Nature.
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