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Abstract  The Fractional Calculus represents a natural instrument to model non-
local phenomena. either in space or time. From Physics and Chemistry
to Biology, there are many processes that involve different space/time
scales. In many problems of the above context the dynamics of the sys-
tem can be formulated by fractional differential equations which include
the nonlocal effects. We give a panoramic view of the problem and show
some examples.
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1. Nonlocal Equations

In the context of the field theory, we have the local theories associated
to the local couplings where the interaction terms are built up from field
quantities referring to the same space-time point. On the other hand,
we have the nonlocal theories defined by nonlocal couplings where the
interaction takes place over a “region” of the space-time characterized
by a prescribed function [1].

Up to 1994 a very extensive review about the nonlinear nonlocal wave
equations with applications to hydrodynamics, magnetohydrodynamics
and plasma can be found in the book of Naumkin and Shishmarev [2].

As an illustration of the nonlocal effects, in [3]-[4] a nonlocal general-
ization of the standard sine-Gordon equation was studied

t
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This equation can be associated with DNA models as well as the
Frenkel-Kontorova model including long-range interaction. When the
kernel defined by f(x — ) is the Dirac Delta we have the classical sine-
Gordon equation; thus it is difficult to analyze the nonlocal model using
a perturbative approach from the local case. The model (1) has static
solutions with zero topological charge that do not exist in the local limit.
They could be interpreted as frozen breathers originated by the space

averaging of the nonlocality. Other nonlocal wave equations had been
studied in [5]-[7].

2. Fractional Calculus

There are different definitions of the fractional derivatives but all of
them coincide in the integer case (see e.g. [8}-[10] and [15]). The frac-
tional derivative of a function is not determined by the behavior of the
function at a single point, but depends on the values of the function
over a entire interval. As an example, we have the following definitions
of time and space fractional derivatives:

n  Thetime fractional derivative of order o > 0 for a sufficiently well-
behaved cousal function w(f) is defined as follows

Cx £
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where m = 1,2,..., and 0 < m —1 < a < m. This definition
requires the absolute integrability of the derivative of order m.

m  The symmetric space fractional derivative [10] of order @ > 0 of
a sufficiently well-behaved function u(z), 2z € R, is defined as the
pseudo-differential operator characterized in its Fourier represen-

tation by o _
d_l—m_l—“u(w) — — | 5 |* i(x) ' (3)

being k & R.

3. Framework of Applications

The Fractional Calculus offers a unifying framework for different con-
texts according to the following basic remarks:

» The freedom in the definition of fractional derivatives allow us to
incorporate different types of information.

m The fractional derivatives show algebraic scale properties with non-
integer exponents what is relevant in the data analysis.
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= A new formulation for the damped systems is possible by using the
fractional derivatives [11]-[12].

» The fractional derivatives allow a natural interpolation among dif-
ferential equations of very different properties as the classical wave
and heat equations:

ac 5 )
aial " gz v =0 )

where 1 <o < 2.

»  The fractional derivative of a function is given by a definite inte-
gral, thus it depends on the values of the function over the entire
interval. In this context, the fractional derivatives are suitable
for the modelling of systems with long range interactions in space
and/or time (memory) and processes with many scales of space
ans/or time involved.

The applications range in a wide spectrum of areas [13]-[16]: ma-
terial sciences(viscoelasticity, polymers,..}, circuits, diffusion processes,
Biology, Economy, Geology, Astrobiology, traffic problems, data analy-
sis,...etc

4, Internal Degrees of Freedom

It is well known the approach of Dirac to obtain his famous equation
from the Klein-Gordon equation [1]. The free Dirac equation can be
considered as the square root of the Klein-Gordon eguation. In a more
general context Morinaga and Nono [17] analyzed the integer s-root of
the partial differential equations of the form

gl
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'The s—root is the first order system
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where o, ..., are matrices. From the physical point of view the
describe internal degrees of freedom of the associated system.

In the above context, a natural generalization is to consider the frac-
tional diffusion equations with internal degrees of freedom [18]-[19]. They
can be obtained as the s-roots of the standard scalar linear diffusion
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equation. Thus, we have a possible definition of the square root of the
standard diffusion equation (SDE) in one space dimension, u#; — gy = 0,

as follows:
52 ]
(AW + Ba P(x,t) =0 (M
where A and B are matrices satisfying the conditions:
A’=]1 , B%?=-J (8)
{A,B} = AB+BA=0. (9)

Here 9(z, t} is a multicomponent function with at least two scalar space-
time components. Also, every scalar component satisfies the SDE. Such
solutions can be interpreted as probability distributions with internal
structure associated to internal degrees of freedom of the system. We
could name them diffunors in analogy with the spinors in Quantum
Mechanics.

We have two possible realizations of the above algebra in terms of real
matrices 2 % 2 associated to the Pauli matrices:

() ae(5))
A=(?é) ,B=(flé) (11)

Other realizations involving complex bi-dimensional matrices are pos-
gible, but taking into account the meaning of the reference diffusion
equation we only consider the real representations.

The solutions of (7) are related to the SDE in a simple way. As an
illustration, let us consider the representation (10}, i.e.

wmﬂz(w@ﬂ)

x(z,1)

such that x(xz,t) = te(x,t). We have two general independent solutions
of (7):

and

ﬂmﬂ(i) and q%@(fl) (12)

where (z,t) is a solution of SDE. The solutions (12) represent two
possible probability distributions depending not only on the space and
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time coordinates, but also on the internal degrees of freedom. This effect
could model the diffusion of particles with internal structure.

The equation (7) is not time reversible but it is invariant under space
reflection as the underlying SDE. More precisely, in the representation
given by (10) a possible representation of the parity operator is P =
APY such that P%: g — —z.
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