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Abstract

A system of fractional evolution equations results from employing the tool of the
Fractional Calculus and following the method used by Dirac to obtain his well-
known equation from the Klein-Gordon’s one. It represents a possible interpolation
between the Dirac and the diffusion equations in one space dimension.

In this paper some analytical properties typical of the general solution of this
system of equations are obtained and necessary stability bounds for a numerical
scheme approximating such equations are found, through the classical discrete Von
Neumann’s type analysis.

The non local property of the time fractional differential operator leads to dis-
cretizations in terms of series. Here, the analytical methods, usually employed in the
study of the stability of discrete schemes when dealing with integer order differential
equations, have been adapted to the complexity of the real order case.
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1 Introduction

The Fractional Calculus (see [3], [13] and [14], for example) deals with the
theory of real (or imaginary) order integral and differential operators and it
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represents a natural instrument to model nonlocal phenomena, either in space
or time, involving different scales.

The general fractional derivative in the variable x can be denoted by Dα
x , where

α > 0, and it is asked to coincide with classical derivatives for integer orders α.
Many different definitions have been proposed in the literature, preserving this
property. Here, we will employ two of the most used ones, in the mathematical
and physical fields, respectively.

The first one is the Riemann-Liouville fractional derivative of order α > 0
(see [14], for example) of a function f given in [a, b], where [a, b] ⊂ R, n ∈ N,
n = −[−α] and x > a:

(RL
aD

α
xf)(x) =

dn

dxn

1

Γ(n− α)

x∫

a

f(τ)

(x− τ)α−n+1
dτ. (1)

The second one is the Caputo fractional derivative, which can be considered
as a regularised version of the previous definition, since it takes the form

( C
aD

α
x f)(x) =

1

Γ(n− α)

x∫

a

fn(τ)

(x− τ)α−n+1
dτ. (2)

The following relation between the above definitions holds

( C
aD

α
x f)(x) =RL

aD
α
x


f(x)−

n−1∑

j=0

f (j)(a+)
(x− a)j

j!


 , (3)

and a sufficient condition under which both derivatives exist is f ∈ ACn−1(a, b)
and fn(x) ∈ L1[a, b]. Equivalence (3) allows to include pure initial conditions
of the classical type when dealing with fractional equations involving Riemann-
Liouville or Caputo derivatives.

In this paper, we consider a generalization of the linear one-dimensional dif-
fusion and wave equations, that we call “fractional evolution Dirac-like equa-
tions”. They are obtained by combining the fractional derivatives and the
internal degrees of freedom associated to a system, as we explain below.

As a matter of fact, the free Dirac equation is, in some sense, the square root of
the Klein-Gordon equation (see, for instance, [16]). Similarly, we can consider
a kind of square root of the following fractional diffusion equation in one space
dimension:

(D2α
t u)(t, x)− λ2∂xxu(t, x) = 0, (4)

which has been widely studied in the literature (see [6], [7], [8], [9] and [15],
for example).
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At this purpose, let us consider the general system of fractional evolution
Dirac-like equations

(ADα
t + λB∂x)v(t, x) = 0, v(t, x) =




u1(t, x)

u2(t, x)


 , (5)

with 0 < α ≤ 1, λ ∈ R, λ 6= 0 and where A and B are 2×2 matrixes satisfying
the Pauli’s algebra:

A2 = I, B2 = −I, AB + BA = 0. (6)

and I is the identity matrix.

Each component of the solution v(t, x) also solves (4) provided the index
property

(Dt
α Dt

α)v(t, x) = Dt
2α v(t, x) (7)

holds (observe that (7) occurs when v(0, x) = 0).

In fact, under the assumption (7), it turns out that:

(ADα
t + λB∂x)v(t, x) = 0 =⇒

(ADα
t + λB∂x)

2 v(t, x) =





(D2α
t u1)(t, x)− λ2∂xxu1(t, x) = 0

(D2α
t u2)(t, x)− λ2∂xxu2(t, x) = 0

(8)

Thus, when 1/2 < α < 1, system (5) represents a fractional interpolation
between diffusion (α = 1/2) and wave (α = 1) equations.

Solutions of this system could model the diffusion of particles whose behavior
depends on the space and time coordinates, as usual, but also on their internal
structures.

The first formulation involving the mathematical operation of semi-differentiation
in replacement of the Fick’s law appeared in a work of 1970 by Oldham and
Spanier [10]. Later, system (5) was studied by Vázquez et al. ([19], [21], [4]
and [11]).

To attribute physical meaning to system (5), we will focus our study on pure
real matrixes of Pauli’s type leading to non equivalent systems (5). Just two
pairs of matrixes fulfill these requirements:

A1 =




0 1

1 0


 , B1 =




0 1

−1 0


 , (9)
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A2 =




1 0

0 −1


 , B2 = B1 =




0 1

−1 0


 . (10)

The first pair (9) reduces system (5) to the following equations of uncoupled
variables u1 and u2:

(Dα
t u1)(t, x)− λ ∂xu1(t, x) = 0, (11)

(Dα
t u2)(t, x) + λ ∂xu2(t, x) = 0. (12)

The second pair (10) leads to the system of coupled variables u∗1 and u∗2:

(Dα
t u∗1)(t, x) + λ ∂xu

∗
2(t, x) = 0, (13)

(Dα
t u∗2)(t, x) + λ ∂xu

∗
1(t, x) = 0. (14)

Section 2 of this paper is devoted to show that solutions u∗1 and u∗2 of (13)
and (14) can be obtained as a linear combination of u1 and u2, solutions of
(11) and (12). This allows to study the general real system (5) just under its
specific simple form given by equations (11) and (12).

In Section 3, we search for stability bounds of a numerical scheme approxi-
mating the specific fractional evolution-diffusion equation

( C
0D

α
t u)(t, x) + λ∂xu(t, x) = 0, (15)

in the domain x > a, t > 0 and together with initial and boundary conditions

u(0+, x) = u0(x), x > a, (16)

u(t, a+) = r(t), t > 0, (17)

where a ∈ R, u0(x) and r(t) are known functions, and C
0D

α
t is the Caputo

fractional derivative of order α, with 0 < α ≤ 1.

In the literature, numerical formulas approximating fractional derivatives are
typically obtained for the Riemann-Liouville expression.

Here, we employ a convolution quadrature formula proposed by Diethelm [1]
to approximate the Caputo time fractional derivative and an usual finite dif-
ference formula for the space partial derivative. Then, the stability bounds of
this scheme are obtained by means of a discrete Von Neumann’s type analysis.

These bounds are confirmed by a dispersion-dissipation study in Section 4,
and they are finally checked in Section 5 for some representative examples,
when we know the underlying exact analytical results.
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As far as we know, these techniques have not previously appeared in the liter-
ature to analyze a discretization of a fractional differential equation. They rep-
resent a fundamental tool in the study of the stability of a numerical scheme;
so it could be very useful to know how to adapt them to this non local case.

Finally, as a general remark, it should be highlighted that the idea of consider-
ing the square root (or even different order of the roots, as cubic, for instance
[19,21]) of a differential equation can be extended to any integer order of such
an equation. This allows to study lots of the equations appearing in applied
fields from an “internal point of view”, providing therefore an additional in-
formation on the associated phenomena.

2 Uncoupled and Coupled Solutions of the System of Fractional
Evolution-Diffusion Dirac-like equations

In this section we find the relation existing between the coupled solutions of
equations (13) and (14), denoted by u∗1 and u∗2, and the uncoupled solutions
u1 and u2 of equations (11) and (12).

Theorem 1 Let u1 be the solution of (11) and u2 the solution of (12). Then:

u∗1 =
u1 + u2

2
, (18)

u∗2 =
u2 − u1

2
, (19)

solve, respectively, equations (13) and (14).

Proof. Let v(t, x) be the solution of

A1 Dα
t v(t, x) + λB1 ∂xv(t, x) = 0. (20)

Then, we want to find two matrixes

M =




m1 m2

m3 m4


 , N =




n1 n2

n3 n4




such that

MA1N = A2, MB1N = B2. (21)

5



After few calculations, it is found that conditions (21) imply m1 = −m3,
m2 = m4 and n1 = −n2 = 1

2m2
, n3 = n4 = 1

2m1
. This is:

M =




m1 m2

−m1 m2


 , N =

1

2




1/m2 −1/m2

1/m1 1/m1


 .

On the other hand, solution v∗(t, x) of (22) has to verify

A2 Dα
t v

∗(t, x) + λB2 ∂xv
∗(t, x) = 0, v∗(t, x) =




u∗1(t, x)

u∗2(t, x)


 , (22)

and, due to (21), it also has to fulfill

A1NDα
t v

∗(t, x) + λB1 N∂xv
∗(t, x) = 0.

Therefore, v∗(t, x) is a solution of (22) if

1

2m1

(Dα
t (u∗1(t, x) + u∗2(t, x)) + λ∂x(u

∗
1(t, x) + u∗2(t, x))) = 0, (23)

1

2m2

(Dα
t (u∗1(t, x)− u∗2(t, x))− λ∂x(u

∗
1(t, x)− u∗2(t, x))) = 0. (24)

It is now straightforward to see that both equations (23) and (24) hold true
if u∗1 and u∗2 are given by relations (18) and (19).

We conclude this section observing that the results included in Theorem 1 are
independent from the definition of the fractional derivative operator appearing
in the equations. Also, it should be emphasized that formulas (18) and (19)
are still valid whenever one considers the kind of square root of an equation
of any order by means of the Pauli’s matrixes, as we did above.

3 Construction of the numerical scheme

The most important feature of a fractional derivative that has to be taken into
account when constructing a numerical scheme is its non-local property. This
characteristic leads to discretizations consisting of a lower triangular matrix
instead of a multi-diagonal matrix, as in the case of integer order classical
derivatives.
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In fact, if we suppose t ∈ [0, T ], x ∈ [a, b], and we introduce the temporal
nodes tn = n∆t, where n = 0, ..., N , t0 = 0, tN = T , and the spatial nodes
xl = a + l∆x where l = 0, ..., M , x0 = a and xM = b, then the Riemann-
Liouville fractional derivative can be approximated as follows




(RL
0D

α
t u)(t0, x)

(RL
0D

α
t u)(t1, x)

...

(RL
0D

α
t u)(tN , x)




≈ 1

∆tα




ω0,0 0 · · · · · · 0

ω1,0 ω1,1 0 · · · 0
...

...
. . . . . . 0

ωN,0 · · · · · · ωN,N







u(t0, x)

u(t1, x)
...

u(tN , x)




.

Here we write ∆tα instead of (∆t)α for simplicity.

In an equivalent form, the value of the Riemann-Liouville derivative for each
time-space point (tn, xl) can be approximated by

(RL
0D

α
tnu)(tn, xl) ≈ 1

∆tα

n∑

j=0

ωn,j uj
l , (25)

where un
l is the numerical approximation of u(tn, xl) and it results un

0 =
u(tn, a) = r(tn) and u0

l = u(0, xl) = u0(xl).

Due to (3), the corresponding approximation for the Caputo derivative is

( C
0D

α
tnu)(tn, xl) ≈ 1

∆tα

n∑

j=0

ωn,j uj
l −

t−α
n u0(xl)

Γ(1− α)
. (26)

In this paper we employ the convolution quadrature formula (25) with the
weights ωn,j proposed by Diethelm in [1]:

Γ(2−α)ωn,j =





1 j = n

(n− j − 1)1−α − 2(n− j)1−α + (n− j + 1)1−α 1 ≤ j ≤ n− 1

(n− 1)1−α − (α− 1)n−α − n1−α j = 0

.

(27)

It has been shown [1] that the convergence order associated to this formula is
O(∆t)2−α.

As well, the weights obtained by Lubich in [5] by means of the so called
discretized operational calculus could have been used instead of the which
ones given in (27). However, such weights lead to an approximation for the
Riemann-Liouville derivative with a convergence order O(∆t)α. So, as in our
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case the index of the fractional derivative in time varies between 0 and 1,
Diethelm’s weights turn out to be advantageous.

In combination with the discrete formula (25) involving Diethelm’s weights
for the time fractional derivative, we employ a classical forward Euler formula
to approximate the first order space derivative:

∂xu(tn, xl) ≈ un
l+1 − un

l

∆x
. (28)

Now, if we write the fractional evolution-diffusion equation (15) by means of
the following integral equation with a strongly singular kernel

1

Γ(−α)

t∫

0

u(τ, x)

(t− τ)α+1
dτ − t−αu0(x)

Γ(1− α)
+ λ∂xu(t, x) = 0, (29)

and we use formula (25) with weights (27) instead of the time fractional deriva-
tive and formula (28) for the space derivative, then the finite difference equa-
tion corresponding to (29) is:

un
l+1 =

(
1− ωn,n

∆x
λ∆tα

)
un

l + ∆x
λ

[
u0(xl)t

−α
n

Γ(1−α)
− n−1∑

j=0

ωn,j

∆tα
uj

l

]
, (30)

for all l = 0, ..., M − 1 and n = 1, ..., N . It is straightforward to see that the
error associated to formula (30) is O(∆t)2−α + O(∆x).

Now then, let us present the main result on the stability obtained from the
discrete Von Neumann’s type analysis of the scheme (30) together with initial
condition (16).

Theorem 2 Given the numerical scheme (30) approximating the fractional
evolution equation (15) together with the initial condition (16), a necessary
condition for the scheme to be stable for all α ∈ (0, 1) is:

∆x

λ∆tαΓ(2− α)
≤ 1. (31)

Proof. Let us introduce in equation (30) the discrete Fourier mode

un
l = τneilQ∆x, (32)

where it is assumed Q = mπ, being m an integer such that 0 ≤ m ≤ M , and
the super index of τ stands for its n−th power. Then, after dividing by eilQ∆x,
it results

τn

(
eiQ∆x − 1 +

∆x

λ∆tαΓ(2− α)

)
= −

n−1∑

j=0

ω̄n,j τ j (33)
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where

ω̄n,j =





−∆x((n−j)1−α−(n−j−1)1−α−((n−j+1)1−α−(n−j)1−α))
λ∆tαΓ(2−α)

j = 1, ..., n− 1

−∆x(n1−α−(n−1)1−α)
λ∆tαΓ(2−α)

j = 0

.

(34)

Therefore, if we assume

L =

(
eiQ∆x − 1 +

∆x

λ∆tαΓ(2− α)

)
, (35)

the key idea is to rewrite (33) through the following equivalent expression:

τn = − ω̄n,0

L

n−1∏

j=1

(
1− ω̄n,j

L

)
. (36)

So, if we use the notation

Aα =
∆x

λ∆tαΓ(2− α)
, (37)

it results:

|1− |1− Aα|| ≤ |L = L(Q)| ≤ 1 + |1− Aα| , ∀Q. (38)

Then

|τ(Q)|n ≤ |Aα| z(n, α)

|1− |1− Aα||
n−1∏

j=1

(
1 +

|Aα| s(j, α)

|1− |1− Aα||

)
∀Q, n ≥ 2, (39)

where

z(n, α) =
(
n1−α − (n− 1)1−α

)
, (40)

s(j, α) = (n− j)1−α − (n− j − 1)1−α −
(
(n− j + 1)1−α − (n− j)1−α

)
; (41)

when n = 1,

|τ(Q)| ≤ |Aα|
|1− |1− Aα|| ∀Q. (42)

Observe that, due to the non negativity and the decreasing character of z(n, α)
with respect to n for all 0 < α < 1, also function s(j, α) turns out to be non
negative for all j = 1, ..., n− 1 and 0 < α < 1. In fact, these two functions are
non negative for all 0 ≤ α ≤ 1.
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Fig. 1. Function g(n, α) for different values of n and α

Therefore, if we assume that
0∏

j=1

(
1 + |Aα|s(j,α)

|1−|1−Aα||
)

= 1, we can separate three

possible cases:

• if Aα < 1

|τ(Q)|n ≤ z(n, α)
n−1∏

j=1

(1 + s(j, α)) , ∀Q, n ≥ 1, (43)

• if Aα = 1

|τ(Q)|n = z(n, α)
n−1∏

j=1

(1 + s(j, α)) , ∀Q, n ≥ 1, (44)

• if Aα > 1

|τ(Q)|n ≤ |Aα| z(n, α)

|2− Aα|
n−1∏

j=1

(
1 +

|Aα| s(j, α)

|2− Aα|

)
, ∀Q, n ≥ 1. (45)

Note that expression |Aα| / |2− Aα| appearing in (45) turns out to be bigger
than 1 if Aα > 1.

Now then, we ask for |τ | ≤ 1 for all Q, in order to obtain the necessary
condition for the stability of the numerical scheme (30) (see [17], for example).

Our aim is to show that this restriction, called the discrete Von Neumann’s
criterion, is here equivalent to require Aα ≤ 1.

To do that, let us consider the following function:

g(n, α) =


z(n, α)

n−1∏

j=1

(1 + s(j, α))




1/n

, (46)
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Fig. 2. Function v(n, α) for different values of |Aα| / |2−Aα|: 1.5, 4, 8.

which represents the maximum of |τ(Q)| with respect to Q in the case Aα ≤ 1.
Then, it has been numerically observed that all the values taken by g(n, α)
for different n and α such that 0 ≤ α ≤ 1, are always below 1.

As an example, Fig.1 plots g(n, α) for n = 1, 2, ..., 30 and α = 0, h, 2h, ..., 1,
with h = 1/40.

On the contrary, the function

v(n, α) =


 |Aα| z(n, α)

|2− Aα|
n−1∏

j=1

(
1 +

|Aα| s(j, α)

|2− Aα|

)


1/n

(47)

appearing in (45) and returning the maximum value of |τ(Q)| with respect to
Q in the case Aα > 1, is always above 1 in an interval of values of α which
grows as the value of |Aα| / |2− Aα| increases. To illustrate this assertion,
Fig.2 is included, obtained for n = 1, 2, ..., 40, α = 0, h, 2h, ..., 1, h = 1/30,
and different values of |Aα| / |2− Aα|.

From this, it can be concluded that necessarily condition (31) has to hold, in
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order to be |τ | ≤ 1 for all Q and α, when 0 < α < 1.

As a remark, it has to be said that (39) returns the classical stability conditions
for the limiting cases α = 0 and α = 1.

In fact, due to (3), the fractional evolution-diffusion equation (15) can be
rewritten as follows

(RL
0D

α
t u)(t, x)− u0(x)t−α

Γ(1− α)
+ λ ∂xu(t, x) = 0. (48)

Then, holding (RL
0D

1
t u)(t, x) = ∂tu(t, x) and (RL

0D
0
t u)(t, x) = u(t, x), equation

(48) is reduced to
∂tu(t, x) + λ ∂xu(t, x) = 0, (49)

when α = 1, whereas it is given by equation

u(t, x)− u0(x) + λ ∂xu(t, x) = 0, (50)

when α = 0.

Now, Diethelm’s weights ωn,j defined in (27) verify, when α = 1, that ωn,j = 0
for all j = 0, 1, ..., n − 2 and ωn,n = 1, ωn,n−1 = −1. As well, when α = 0,
ωn,j = 0 for all j = 0, 1, ..., n−1 and ωn,n = 1. So, the finite difference equation
(30), when α = 1, reads

un
l+1 =

(
1− ∆x

λ∆t

)
un

l +
∆x

λ∆t
un−1

l , (51)

being u0(xl)t
−α
n

Γ(1−α)
|α=1 = 0, whereas, when α = 0, it is the following:

un
l+1 =

(
1− ∆x

λ

)
un

l +
∆x

λ
u0(xl). (52)

Schemes (51) and (52) are exactly the which ones we would obtain applying
forward Euler formulas to discretize the first order derivatives in space and
time appearing in (49), and just the first order space derivative included in
(50), respectively.

Von Neumann’s type analysis of stability of scheme (51) leads to the following
equation for τ :

τn
(
eiQ∆x − 1 +

∆x

λ∆t

)
=

∆x

λ∆t
τn−1, (53)

which is equivalent to

τ =

[
A1

(eiQ∆x − 1 + A1)

]
, (54)
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where A1 = ∆x/(λ∆t) = Aα |α=1 .

From this, the inequality

|τ(Q)| ≤ |A1|
|1− |1− A1|| , ∀Q, (55)

is deduced and therefore it results:

• if A1 < 1

|τ(Q)| ≤ 1, ∀Q, (56)

• if A1 = 1

|τ(Q)| = 1, ∀Q, (57)

• if A1 > 1

|τ(Q)| ≤ |A1|
|2− A1| , ∀Q. (58)

Then, according to the Von Neumann’s criterion, a necessary condition for the
stability of scheme (51) is A1 = ∆x/(λ∆t) ≤ 1.

As it was to be expected, inequality (55) can be obtained from (39) since the
function z(n, α) defined in (40) verifies z(n, 1) = 1 if n = 1 and z(n, 1) = 0 if
n ≥ 2. As well, looking at Fig.1, it can be seen that when Aα ≤ 1, the function

g(n, α) = max
Q=0,π,...,Mπ

|τ(Q)|

corresponding to α = 1 is equal to 1 when n = 1 and to 0 when n ≥ 2.

In addition to that, Fig.2 also shows that, when Aα > 1, function

v(n, α) = max
Q=0,π,...,Mπ

|τ(Q)|

is equal to |Aα| / |2− Aα| if α = 1.

On the other hand, when α = 0 the discrete Von Neumann’s analysis of
stability for the scheme (51) leads to the following equation for τ :

τn
(
eiQ∆x − 1 +

∆x

λ

)
=

∆x

λ
(59)

which is equivalent to

τ =

[
A0

(eiQ∆x − 1 + A0)

]1/n

, (60)

where A0 = ∆x/λ = Aα |α=0 .
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So, the following inequality can be written:

|τ(Q)| ≤
[ |A0|
|1− |1− A0||

]1/n

, ∀Q, (61)

which implies:

• if A0 < 1

|τ(Q)| ≤ 1, ∀Q, (62)

• if A0 = 1

|τ(Q)| = 1, ∀Q, (63)

• if A0 > 1

|τ(Q)| ≤
[ |A0|
|2− A0|

]1/n

, ∀Q. (64)

Once again, the necessary condition of stability for the scheme (52) is obtained
by imposing |τ | ≤ 1, that leads to A0 = ∆x/λ ≤ 1.

As for the case α = 1, inequality (39) returns (61) when α = 0 due to the
fact that z(n, α) verifies z(n, 0) = 1 for all n ≥ 1, whereas s(n, α), defined for
n ≥ 2, fulfills s(j, 0) = 0 for all j = 1, ..., n− 1.

As well, Fig.1 shows that, when Aα ≤ 1, function

g(n, α) = max
Q=0,π,...,Mπ

|τ(Q)|

equals 1 for all n in correspondence of α = 0, according to results (62) and
(63). This means that max

Q=0,π,...,Mπ
|τ(Q)| = 1 when A0 ≤ 1.

Also, when Aα > 1, the function

v(n, α) = max
Q=0,π,...,Mπ

|τ(Q)|

takes the value (|Aα| / |2− Aα|)1/n if α = 0, in accordance with inequality (64)
from which relation

max
Q=0,π,...,Mπ

|τ(Q)| = (|A0| / |2− A0|)1/n

is deduced when A0 > 1, and also in agreement with the graphics appearing
in Fig.2.
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4 Dispersion-dissipation relation

4.1 Motivation

Usually, while solving analytically a partial differential equation, the dispersion-
dissipation relation ω = ω(β) [20] is pursued so that the following wave in time
and space

u(t, x) = û ei(ωt+βx) (65)

is a solution of such an equation (see [17], for instance).

If we consider the parabolic diffusion equation

∂tu(t, x)− ν∂xxu(t, x) = 0, (66)

and the hyperbolic evolution equation

∂tu(t, x) + λ∂xu(t, x) = 0, (67)

then the function (65) solves equation (66) if ω = iνβ2, and it solves equation
(67) while ω = −λβ.

Therefore, the wave solving (66) takes the form

u(t, x) = û e−νβ2t eiβx, (68)

and it does not move in space whereas it decays in time if ν > 0. This is the
typical behavior shown by wave solutions of parabolic type equations.

As well, solution (65) of equation (67) takes the expression

u(t, x) = û eiβ(x−λt), (69)

which is a wave propagating along the x axe with a speed λ = −ω/β and
without any decay in the amplitude. In particular, when ω is a linear function
of β, the propagation speed is independent from the frequency.

Decay and propagation of the different Fourier modes are very important to
describe the behavior of the solution of a partial differential equation.

In fact, solutions of partial differential equations are said to be dissipative
when the Fourier modes do not grow in time and one, at least, decays. This
is the case, for example, of the solutions (68) of the diffusion equation (66),
which all dissipate when ν > 0, except for the constant solution u(t, x) = û
associated to the wave number β = 0, that is not well determined by equation
(66). Solutions are said to be non dissipative when the Fourier modes do not
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grow nor decay, as it occurs with the waves (69) solving the evolution equation
(67).

Finally, solutions of partial differential equations are said to be dispersive if the
Fourier modes having different wavelengths propagate with different speeds;
this is the case, for example, of the solutions of equations just involving partial
derivative in x of order equal or bigger than 1.

On the other side, when a finite difference equation is employed to approximate
the continuous solution of a partial differential equation, the behavior of its
numerical solution also depends on if the discrete Fourier modes decay or grow.
For example, it can be said that the numerical scheme is unstable whenever
some modes grow without bounds.

4.2 The fractional case

In the particular case under study in this section, the wave function (65) has
to be a solution of the fractional evolution-diffusion Dirac like equation (15).
Then we obtain a dispersion-dissipation relation much more complex than the
which ones appearing in the examples above.

In fact, in view of the property (3) and the following:

(RL
aD

α
xu)eλx =

eλa

(x− a)α
E1,1−α(λx− λa) (70)

where λ ∈ R and the definition of the Mittag-Leffler function [2] is

Eα,β(z) =
∞∑

j=0

zj

Γ(αj + β)
=

1

2πi

∫

Ha

eσσα−β

σα − z
dσ, (71)

being {α, β, z} ∈ C, Re(α) > 0, we have:

C
0D

α
t û ei(ωt+βx) = ût−α eiβxE1,1−α(iωt)− û

t−α

Γ(1− α)
eiβx =

= iωût1−α eiβxE1,2−α(iωt).

So, the dispersion-dissipation relation associated to equation (15) is given by
the following expression:

ωt1−α E1,2−α(iωt) = −λβeiωt. (72)

When α = 1, formula (72) coincides with the relation obtained for the evo-
lution equation (67). When α 6= 1, it is not possible to obtain explicitly ω as
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a function of β. It results, in fact, ω = ω(β, t) due to the non local charac-
ter of the fractional differential operator. As a consequence, the dispersion-
dissipation relation also involves time.

Now, keep on considering the behavior of the Fourier modes solving the nu-
merical scheme (30) associated to equation (67).

The first step is to provide the discrete analogous of the Fourier mode (65):

un
l = ûeiωn∆teilβ∆x. (73)

Then, as in the continuous case, we search for the relation ω = ω(β) allowing
(73) to be a solution of (30).

According to the calculations we realized in the proof of Theorem 2, and
particularly result (36), we can write

eiω∆t = − ω̄1,0

(eiβ∆x − 1 + Aα)
=

Aα

(eiβ∆x − 1 + Aα)
=

Aα

L
. (74)

Here: the weight ω̄1,0 is deduced from (34), the expressions for Aα and L have
been given in (37) and (35), respectively, provided Q is substituted by β.

Now, if we write ω = a + ib, it turns out to be eiω∆t = eia∆te−b∆t, where

b = − 1

∆t
ln
|Aα|
|L| . (75)

Consequently, all the waves given by (73) with β 6= 0 decay if b > 0, that means

if |Aα|
|L| < 1, and this is fulfilled if Aα = ∆x

λ∆tαΓ(2−α)
< 1. Therefore, under this

restriction the scheme is dissipative and a necessary condition for the scheme
to be stable is found. Note that, this is exactly the necessary condition (31)
provided in Theorem 2. If β = 0, the Fourier mode (73) does not grow nor
decay and the scheme is not dissipative. Finally, when β 6= 0 and b < 0, the
scheme is unstable because some Fourier modes are unbounded.

On the other side, it turns out to be

eia∆t =
Aα

L

|L|
|Aα| =

Aα

|Aα| (cos (β∆x) + Aα − 1− i sin (β∆x)) , (76)

and so

tan (a∆t) = − sin (β∆x)

cos (β∆x) + Aα − 1
. (77)
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As a consequence,

a = − 1

∆t
arctan


 sin (β∆x)

Aα − 2 sin2
(

β∆x
2

)

, (78)

and the scheme is dispersive, being this expression not a linear function in β.

Generally speaking, when a numerical scheme shows dissipation and dispersion
at the same time, then dissipation uses to hide dispersion and the Fourier
modes which try to move at a wrong velocity are muffled. If one wanted to
confirm this assumption, then he should study both the behavior of e−b∆t, in
order to see how the solution dissipates, and of the error in the propagation
speed of the Fourier mode involving β∆x, for all 0 ≤ β∆x ≤ π. Said error is
the difference between the exact propagation speed of the wave (65) solving
(15) (represented by the function of β given by −ω/β, that we would know
explicitly if we could find the explicit expression of ω as a function of β starting
from relation (72)) and the speed of propagation of the discrete Fourier mode
(73), given by

−a/β =
1

β∆t
arctan

(
sin β∆x

Aα − 2 sin2 β∆x
2

)
,

for all 0 ≤ β∆x ≤ π.

5 Numerical results

To conclude, we show numerical results emerging from simulations of the
evolution-diffusion equation (15) together with the specific initial-boundary
conditions

u(0+, x) = e−µx, x > a,

u(t, a+) = e−µaEα,1(µλtα), t > 0,

(79)

where a ∈ R, µ > 0 and 0 < α < 1. These simulations employed the scheme
(30), in order to check the stability bounds (31).

The analytical solution of this problem was obtained in [12] and it is given by

uα(t, x) = e−µxEα,1(µλtα), (80)

for all x ≥ a and t ≥ 0. According with the properties of the Mittag-Leffler
function, it takes the specific forms:

u1/2(t, x) = e−µxeµ2λ2terfc
(
−µλ

√
t
)
, (81)
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Fig. 3. Function Eα,1 (tα) for 0 ≤ t ≤ 3 when α = 0.2, α = 0.5, α = 0.8 and α = 1

u1(t, x) = e−µ(x−λt). (82)

In the practice, to provide the values of (80), the Mittag-Leffler serie is calcu-
lated by solving numerically the ordinary differential equation

(C
0D

α
t u)(t)− µλu(t) = 0, (83)

with the initial condition u(0) = 1, being Eα,1 (µλtα) the exact solution of this
problem.

Fig.3 represents the function Eα,1 (tα) for t ∈ [0, 3] and when α = 0.2, α = 0.5,
α = 0.8 and α = 1.

The software Matlab7.0 working in double precision has been employed to
perform all the involved numerical simulations.

An interesting example confirming that condition (31) over time and space
steps of the finite difference scheme (30) is necessary in order to have sta-
bility, is the following. We calculated the maximum of the absolute errors
resulting between the values of the exact solution (80), numerically evaluated
over the space-time grid points, and the approximated ones produced by the
implementation of the difference scheme (30) when µ = λ = 1, x ∈ [1 , 3.5],
∆x = 0.025, t ∈ [0, 2], ∆t = 0.0125. Then, we observed that its value is 0.1189
when α = 0.1, 0.00241 when α = 0.5 and that it is unbounded when α = 0.9.

The result concerning α = 0.9, is due to the breaking of th condition (31).
In fact, relation (∆x/(∆tαΓ(2− α))) ≤ 1 comes true if α = 0.1 and α = 0.5,
whereas it is not fulfilled when α = 0.9, being ∆x = 0.025, ∆t0.9 = 0.0194
and Γ(1.1) = 0.9513. Now, if we simulate the same solutions when µ = 1,
x ∈ [1 , 3.5], ∆x = 0.025, t ∈ [0, 2], ∆t = 0.0125, but λ = −1, we find that
the scheme (30) converges only when α = 0.1 and it diverges for α = 0.5 and
α = 0.9.
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The wide number of simulations we performed for different values of α, ∆x,
∆t and λ, indicates that a necessary and sufficient condition ensuring the
stability of the difference scheme (30) should be almost stronger than the
pure necessary condition we provided in (31).

To obtain both a necessary and sufficient condition of stability, a discrete gen-
eralized Von Neumann analysis should be driven, based, instead than on the
usual Fourier mode (32), on some appropriate functions deduce by applying
discrete method of separation of variables to the problem under study (see
[17, Chapt. 3]). Also, a different method taking boundary conditions into ac-
count and leading to stronger conditions of stability is the so called “GKSO”,
detailed in [18].

6 Conclusions

The non local feature of the integral operators defining real order derivatives
is in contrast with the local behavior of the classical integer order differential
operators, which can be evaluated considering values of the function under
derivation in an arbitrary small interval around the variable. This property of
memory of the fractional derivatives leads to very complex discretizations of
these operators and, as a consequence, the arithmetic cost of the corresponding
algorithms increases, with respect to the methods usually employed when
dealing with integer order differential equations.

In this paper we constructed a numerical scheme solving the fractional evolution-
diffusion equation and we developed the corresponding classical discrete Von
Neumann’s type analysis that revealed pure necessary conditions of stability
which, in general, are not sufficient. However this was to be expected. In-
deed, from a theoretical point of view, when a Von Neumann’s type analysis
is carried out on finite difference schemes associated to initial-boundary val-
ues problems for parabolic equations, it leads to stability conditions that are
both necessary and sufficient if the matrix associated to the scheme is sym-
metric. When dealing with schemes for hyperbolic equations, as in our case,
almost never a symmetric matrix can be expected and so only pure necessary
conditions are deduced.

On the other hand, the dispersion-dissipation study for the numerical scheme
highlighted that it is dissipative when the necessary condition of stability
derived from the Von Neumann’s type analysis is fulfilled. Also, the scheme
turned out to be dispersive, although this behavior could not be observed
whenever, as it usually occurs, the dissipation hides the dispersion and the
Fourier components moving at a wrong velocities are muffled.
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In conclusion, the continuous and discrete evolution-diffusion equations of the
Dirac’s type, representing a generalization of the classical evolution, diffusion
and wave equations, show a dispersion-dissipation behavior in the middle be-
tween the parabolic (dissipative) and the hyperbolic one (non dissipative). It
is very typical, when dealing with fractional operators, to obtain results gen-
eralizing and interpolating the classical ones corresponding to integer order
cases.
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