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This paper presents a discrete variational principle and a method to build first-integrals for finite dimensional

Lagrange–Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. The discrete

variational principle and the corresponding Euler–Lagrange equations are derived from a discrete action associated

to these systems. The first-integrals are obtained by introducing the infinitesimal transformation with respect to the

generalized coordinates and electric quantities of the systems. This work also extends discrete Noether symmetries to

mechanico-electrical dynamical systems. A practical example is presented to illustrate the results.

Keywords: discrete, variational principle, first integral, mechanico-electrical systems
PACC: 0220; 0320

1. Introduction

Dynamical systems with symmetries play an im-
portant role in the mathematical modelling of a large
class of physical and mechanical processes. The
symmetries allow one to build the invariants of the
systems,[1] that can be useful to integrate the equa-
tions of motion, and also to construct suitable nu-
merical integrators for different equations of mathe-
matical physics.[2,3] In this paper, our aim is to pro-
vide a technique to find the equivalent of first inte-
grals for a discrete system, as an extension of the
continuous case. Arising from different approaches,
discrete variational principles and first integrals for
discrete mechanics have been considered over many
years. The theory of discrete variational mechanics
goes back to the 1960s, when Jordan and Polak[4]

first treated them in the optimal control literature.
Cadzow[5] motivated and discussed discrete calculus of
variations and obtained the discrete Euler–Lagrange
equations. Logan[6] obtained first integrals, using the
discrete calculus of variation and a discrete Noether

theorem, and studied the multi-dimensional as well as
the higher-order extensions. Maeda[7,8] analysed the
canonical structure and the symmetries for discrete
systems, and extended Noether’s theorem in the dis-
crete case. Lee[9] was the first to consider time also
as a discrete dynamical variable. These ideas were
extended by Veselov,[10,11] Moser and Veselov[12] for
integrable systems. Jaroszkiewiez and Norteo[13−15]

applied this to some discrete mechanical models, in-
cluding systems of particles, classical fields and quan-
tum theory. The variational point of view and the
numerical implementation of discrete mechanics have
been developed by Wendlandt and Marsden,[16] Kane
et al,[17] and Bobenko and Suris.[18] Following this,
Marsden et al,[19] and Bokenko and Suris[20] consid-
ered symmetry reductions of discrete Lagrangian me-
chanics, discrete Lagrangian reduction, etc. Kane et
al[21] extended variational integration algorithms to
discrete, dissipative, mechanical systems. In the work
of Marsden and West,[22] a comprehensive and uni-
fied view of much of these works both on discrete me-
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chanics and on numerical integration methods for me-
chanical systems can be found. Recently, Guo, Wu et
al [23−27] have presented many results on difference dis-
crete variational principles, Euler–Lagrange cohomol-
ogy, symplectic and multisymplectic structures and
total variation in Hamiltonian formalism, symplectic-
energy integrators, etc. Zhang and Chen et al [28−30]

have recently obtained many results on discrete vari-
ation principles and first integrals of dynamical sys-
tems.

The study of discrete variational principles and
of first integrals for mechanical systems has been for
many years a field with an intense research activity.
The increasing interest in the subject is mainly due to
its dual character. On the one hand, discrete varia-
tional principles and first integrals of mechanical sys-
tems allow for the construction of integration schemes
that turn out to be numerically competitive in many
problems. On the other hand, many of the geomet-
ric properties of mechanical systems in the continuous
case admit an appropriate counterpart in the discrete
setting, which makes it a rich area to be explored.
Both aspects play a key role in explaining the good be-
haviour shown by the integrators in simulating many
different systems.

Mechanico-electrical systems are those in which
a mechanical process and an electromagnetic one are
coupled to each other. Solving a mechanico-electrical
systems is in general a difficult task, since we may
expect the presence of nonlinear terms. These sys-
tems have many applications, and it is relevant, thus,
to build tools that can provide numerical solutions.
Besides, the discrete variational techniques and the
related integration methods appear as an indispens-
able tool in the domain of modern engineering tech-
nology. The purpose of this paper is to extend the
discrete variational principle and the method for first
integrals used in mechanical systems to mechanico-
electrical systems. In the first place, we use a dis-
crete Lagrangian to define a discrete action. This
includes defining generalized coordinates and gener-
alized electric quantities. Then, we obtain a discrete
variational principle and the corresponding discrete
Euler–Lagrange equations for the Lagrange–Maxwell
mechanico-electrical systems. And finally, we derive
the method of building first integrals by using in-
finitesimal transformations with respect to the gener-
alized coordinates and the generalized electric quanti-
ties. In future works, we will test the algorithms thus
obtained in some relevant examples.

2. Lagrange–Maxwell equations

for Lagrange–Maxwell mecha-

nico-electrical systems

We present now the standard procedure of deriv-
ing the equations of motion for a mechanico-electrical
system (see for instance Ref.[31]). In a mechanico-
electrical system, mechanical and electromagnetic pro-
cesses are coupled to each other: let us consider a
mechanico-electrical system composed of some parti-
cles for the mechanical part, described by their gener-
alized n-dimensional coordinate-vectors q and q̇ and
by some mutual-interaction potential V (q), and m re-
turn electric circuits, that constitute the electrody-
namical part, consisting of line conductors and capac-
itors. We assume that there is no connection among
the electric currents of the different return circuits and
that the electromagnetic processes of the return cir-
cuits are not independent. For circuit k, ik denotes
the current, uk the electric potential, ek (ėk = ik)
the charge in the capacitor, Rk denotes the resistance,
and Ck denotes the capacitance. With this, the La-
grangian of the mechanico-electrical system is given
by

L = T (q, q̇, e, ė) − V (q) + Wm(q, ė) − We(q, ė) , (1)

where

We =
1
2

m∑
k=1

e2
k

Ck
, Wm =

1
2

m∑
k=1

m∑
r=1

Lkrikir , (2)

are, respectively, the electric and the magnetic field
energy of the circuits. In Eq.(2), Ck = Ck(q) is the
capacitance of the kth circuit, Lkr = Lkr(q) (k �= r)
is the mutual inductance between the kth and the rth
circuits, and Lkk is the self-inductance of the kth re-
turn circuit.

The equations of motion, or Lagrange–Maxwell
equations, for the system are

d
dt

∂L

∂ėk
− ∂L

∂ek
+

∂F

∂ėk
= uk ,

d
dt

∂L

∂q̇s
− ∂L

∂qs
+

∂F

∂q̇s
= Q′′

s ,

(k = 1, . . . , m; s = 1, . . . , n). (3)

They conform a set of n+m ordinary differential equa-
tions. The force F is given by

F = Fe(ė) + Fm(q, q̇), (4)
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where Fe is the lead-through electric dissipative func-
tion:

Fe =
1
2

m∑
k=1

Rki2k =
1
2

m∑
k=1

Rkė2
k , (5)

and Fm is the dissipative function of the vis-
cous frictional damping force. Both −∂F/∂q̇s and
−∂F/∂ėk correspond to dissipative forces, Q′′

s is the
s-component of a non-conservative general force Q′′,
and uk is the general electromotive force of the kth
circuit.

3. Discrete variational princi-

ple and Euler–Lagrange equa-

tions for a Lagrange–Maxwell

mechanico-electrical system

Let us consider an (n + m)-dimensional config-
uration space Q. The discrete Lagrangian and the
discrete dissipative function for a mechanico-electrical
system are smooth maps:

Ld : Q × Q → IR, Fd : Q × Q → IR. (6)

The time step information is contained in Ld which
is a function of the four values (qk−1,qk,el−1,el). For

any positive integers N and J , the action sum is the
map Sd : QN+J+2 → IR defined by

Sd =
N∑

k=1

J∑
l=1

Ld(qk−1, qk, el−1, el) , (7)

where (qk−1, el−1) ∈ Q and (qk, el) ∈ Q, for all the
considered values of k, l. The action sum is the dis-
crete analogue of the action integral for a continuous
mechanico-electrical dynamical system.

Let us consider, as an example, a continuous
mechanico-electrical system with a Lagrangian of the
standard form

L(q, q̇, e, ė) =
1
2
q̇TM q̇ − V (q)

+
1
2
eTC−1e +

1
2
ėTL1ė , (8)

where M and L1 are symmetric positive-definite mass
matrices, C is the diagonal m × m matrix having
Ck as k, k-element, q = (q1, . . . , qn) ∈ IRn, e =
(e1, . . . , em) ∈ IRm, and (q, e) ∈ IRn+m = Q. Dif-
ferent choices for the discrete Lagrangian give rise to
the same discrete Euler–Lagrange equations. Using an
interpolation parameter 0 ≤ α ≤ 1, we have chosen a
symmetrized discrete Lagrangian, Ld : Q × Q → IR,
of the form

Lα
d (qk−1, qk, el−1, el) =

h

2
L

(
(1 − α)qk−1 + αqk,

qk − qk−1

h
, (1 − α)el−1 + αel,

el − el−1

h

)

+
h

2
L

(
αqk−1 + (1 − α)qk,

qk − qk−1

h
, αel−1 + (1 − α)el,

el − el−1

h

)
, (9)

where h ∈ IR+ is the time step. We also chose a symmetrized discrete dissipative function, Fd : Q × Q → IR,
of the form

Fα
d (ql−k, qk, el−1, el) =

h

2
F

(
(1 − α)qk−1 + αqk,

qk − qk−1

h
,
el − el−1

h

)

+
h

2
F

(
αqk−1 + (1 − α)qk,

qk − qk−1

h
,
el − el−1

h

)
. (10)

For instance, substituting Eq.(8) in Eq.(9), and simplifying, we obtain the discrete Lagrangian:

Lα
d (qk−1, qk, el−1, el) =

h

2

[(qk − qk−1

h

)T

M
(qk − qk−1

h

)
− V ((1 − α)qk−1 + αqk)

− V
(
αqk−1 + (1 − α)qk

)
+

(el−1 − el

h

)T

L1

(el−1 − el

h

)

+
1
2
(eT

l−1C
−1el−1 + eT

l C−1el) + α(α − 1)(el − el−1)TC−1(el − el−1)
]
. (11)

Keeping in mind that the (continuous) integral variational principle for mechanico-electrical systems is given
by Ref.[32]

δ

∫
L

(
q(t), e(t), q̇(t), ė(t)

)
dt +

∫ (
Q′′ − ∂F

∂q̇

)
◦ δq dt +

∫ (
u − ∂F

∂ė

)
◦ δe dt = 0 , (12)
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where ◦ stands for the scalar products, we define the discrete variational principle as

δ
∑

Ld(qk−1, qk, el−1, el) +
∑[

Q′′−
d (qk−1, qk) − ∂F

∂q̇

∣∣∣−
d

(qk−1, qk, el−1, el)
]
◦ δqk−1

+
∑ [

Q′′+
d (qk−1, qk) − ∂F

∂q̇

∣∣∣+
d
(qk−1, qk, el−1, el)

]
◦ δqk

+
∑ [

u−
d (el−1, el) − ∂F

∂ė

∣∣∣−
d

(qk−1, qk, el−1, el)
]
◦ δel−1

+
∑ [

u+
d (el−1, el) − ∂F

∂ė

∣∣∣+
d
(qk−1, qk, el−1, el)

]
◦ δel = 0 , (13)

where Ld is the discrete Lagrangian,
∂F

∂q̇

∣∣∣−
d

,
∂F

∂ė

∣∣∣−
d

,
∂F

∂q̇

∣∣∣+
d

, and
∂F

∂ė

∣∣∣+
d

are the left and right discrete dissipative

forces respectively, given by

∂F

∂q̇

∣∣∣−
d

(qk−1, qk, el−1, el) =
h

2

[∂F

∂q̇

(
(1 − α)qk−1 + αqk,

qk − qk−1

h
,
el − el−1

h

)

+
∂F

∂q̇

(
αqk−1 + (1 − α)qk,

qk − qk−1

h
,
el − el−1

h

)]
, (14)

∂F

∂q̇

∣∣∣+
d

(qk, qk+1, el, el+1) =
h

2

[∂F

∂q̇

(
(1 − α)qk + αqk+1,

qk+1 − qk

h
,
el+1 − el

h

)

+
∂F

∂q̇

(
αqk + (1 − α)qk+1,

qk+1 − qk

h
,
el+1 − el

h

)]
, (15)

∂F

∂ė

∣∣∣−
d

(qk−1, qk, el−1, el) =
h

2

[∂F

∂ė

(
(1 − α)qk−1 + αqk,

qk − qk−1

h
,
el − el−1

h

)

+
∂F

∂ė

(
αqk−1 + (1 − α)qk,

qk − qk−1

h
,
el − el−1

h

)]
, (16)

∂F

∂ė

∣∣∣+
d

(qk, qk+1, el, el+1) =
h

2

[∂F

∂ė

(
(1 − α)qk + αqk+1,

qk+1 − qk

h
,
el+1 − el

h

)

+
∂F

∂ė

(
αqk + (1 − α)qk+1,

qk+1 − qk

h
,
el+1 − el

h

)]
, (17)

and Q′′−
d , u−

d , Q′′+
d and u+

d are the left and right discrete non-conservative forces:

Q′′−
d (qk−1, qk) =

h

2

[
Q′′

(
(1 − α)qk−1 + αqk,

qk − qk−1

h

)
+ Q′′

(
αqk−1 + (1 − α)qk,

qk − qk−1

h

) ]
, (18)

u−
d (el−1, el) =

h

2

[
u

(
(1 − α)el−1 + αel,

el − el−1

h

)
+ u

(
αel−1 + (1 − α)el,

el − el−1

h

)]
, (19)

Q′′+
d (qk, qk+1) =

h

2

[
Q′′

(
(1 − α)qk + αqk+1,

qk+1 − qk

h

)
+ Q′′

(
αqk + (1 − α)qk+1,

qk+1 − qk

h

)]
, (20)

u+
d (el, el+1) =

h

2

[
u

(
(1 − α)el + αel+1,

el+1 − el

h

)
+ u

(
αel + (1 − α)el+1,

el+1 − el

h

)]
. (21)

The variation of the discrete action is given by

δ
∑

Ld(qk−1, qk, el−1, el) =
N∑

k=1

J∑
l=1

[∂Ld(qk−1, qk, el−1, el)
∂qk−1

◦ δqk−1 +
∂Ld(qk−1, qk, el−1, el)

∂qk
◦ δqk

]

+
N∑

k=1

J∑
l=1

[∂Ld(qk−1, qk, el−1, el)
∂el−1

◦ δel−1 +
∂Ld(qk−1, qk, el−1, el)

∂el
◦ δel

]

=
N−1∑
k=1

J−1∑
l=1

[∂Ld(qk−1, qk, el−1, el)
∂qk

+
∂Ld(qk, qk+1, el, el+1)

∂qk

]
◦ δqk

+
N−1∑
k=1

J−1∑
l=1

[∂Ld(qk−1, qk, el−1, el)
∂el

+
∂Ld(qk, qk+1, el, el+1)

∂el

]
◦ δel , (22)
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since we have to consider the extremal points constant and, thus, δq0 = δqN = �0 and δe0 = δeJ = �0.
Substituting all this into Eq.(13), and changing the summation index when necessary, as in Eq.(22), we obtain
the discrete Euler–Lagrange equations, setting to zero the coefficients of δqk and of δel for k = 1, . . . , N − 1;
l = 1, . . . , J − 1:

∂Ld(qk−1, qk, el−1, el)
∂qk

+
∂Ld(qk, qk+1, el, el+1)

∂qk
+ Q′′−

d (qk−1, qk) + Q′′+
d (qk, qk+1)

− ∂F

∂q̇

∣∣∣−
d

(qk−1, qk, el−1, el) − ∂F

∂q̇

∣∣∣+
d

(qk, qk+1, el, el+1) = 0 ,

∂Ld(qk−1, qk, el−1, el)
∂el

+
∂Ld(qk, qk+1, el, el+1)

∂el
+ u−

d (el−1, el) + u+
d (el, el+1)

− ∂F

∂ė

∣∣∣−
d

(qk−1, qk, el−1, el) − ∂F

∂ė

∣∣∣+
d

(qk, qk+1, el, el+1) = 0 . (23)

It will be useful to have the equations written in the equivalent form:

D2Ld(qk−1, qk, el−1, el) + D1Ld(qk, qk+1, el, el+1) + Q′′−
d (qk−1, qk) + Q′′+

d (qk, qk+1)

− ∂F

∂q̇

∣∣∣−
d

(qk−1, qk, el−1, el) − ∂F

∂q̇

∣∣∣+
d
(qk, qk+1, el, el+1) = 0 ,

D4Ld(qk−1, qk, el−1, el) + D3Ld(qk, qk+1, el, el+1) + u−
d (el−1, el) + u+

d (el, el+1)

− ∂F

∂ė

∣∣∣−
d

(qk−1, qk, el−1, el) − ∂F

∂ė

∣∣∣+
d
(qk, qk+1, el, el+1) = 0 , (24)

where Dj represent the gradient with respect to the jth (vectorial) variable:

D2Ld(qk−1, qk, el−1, el) =
∂Ld(qk−1, qk, el−1, el)

∂qk
,

D1Ld(qk, qk+1, el, el+1) =
∂Ld(qk, qk+1, el, el+1)

∂qk
,

D4Ld(qk−1, qk, el−1, el) =
∂Ld(qk−1, qk, el−1, el)

∂el
,

D3Ld(qk, qk+1, el, el+1) =
∂Ld(qk, qk+1, el, el+1)

∂el
. (25)

4. First integrals for discrete Lagrange–Maxwell mechanico-electrical

systems

For continuous systems, Noether’s theory states that a symmetry of the Lagrangian leads to a conserved
quantity, also called a first integral. We will now present a discrete version of Noether’s theorem and derive a
method to build the corresponding discrete first integral. We use the invariance of the discrete Lagrangian for
discrete Lagrange–Maxwell mechanico-electrical systems.

Let us consider the following infinitesimal transformations for the discrete coordinates and electric quanti-
ties:

q∗ = q + εξ(q, e), e∗ = e + εη(q, e), (26)

where ε is a small parameter, and ξ = (ξ1, . . . , ξn) and η = (η1, . . . , ηm) are the infinitesimal generators. We
first give a definition as follows:

Definition The discrete Lagrangian Ld, for a system with nonconservative force Qd and general elec-
tromotive force ud , is generalized difference-invariant under the transformation (26) if there exists a function
v(qk−1, qk, el−1, el), defined for each value of k = 1, . . . , N − 1 and l = 1, . . . , J − 1, such that

δLd[εξk(q, e), εηl(q, e)] = ε
[∂F

∂q̇

∣∣∣−
d

(qk−1, qk, el−1, el) +
∂F

∂q̇

∣∣∣+
d
(qk, qk+1, el, el+1) − Q′′−

d (qk−1, qk)
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− Q′′+
d (qk, qk+1)

]
◦ ξ(qk, el) + ε

[∂F

∂ė

∣∣∣−
d

(qk−1, qk, el−1, el) +
∂F

∂ė

∣∣∣+
d
(qk, qk+1, el, el+1)

− u−
d (el−1, el) − u+

d (el, el+1)
]
◦ η(qk, el) + εΔv(qk−1, qk, el−1, el) , (27)

where Δ is the (forward) difference operator, i.e., Δqk = qk+1 − qk, Δel = el+1 − el, and in general:

δLd = D2Ld(qk−1, qk, el−1, el) ◦ δqk + D1Ld(qk−1, qk, el−1, el) ◦ δqk−1

+ D4Ld(qk−1, qk, el−1, el) ◦ δel + D3Ld(qk−1, qk, el−1, el) ◦ δel−1 . (28)

Based on the discrete Lagrange–D’Alembert principle, we can present the following proposition:
Proposition If the discrete Lagrangian is generalized difference invariant under the infinitesimal trans-

formation (26) and the discrete Euler–Lagrange equations (24) hold, then the discrete Lagrange–Maxwell
mechanico-electrical system possesses a conserved quantity, or a first integral given by

D1Ld(qk−1, qk, el−1,el) ◦ ξ(qk, el) + D3Ld(qk−1, qk, el−1,el) ◦ η(qk, el) + v(qk−1, qk, el−1, el) = const. (29)

Proof From Eq.(27), since in this case δq = εξ and δe = εη, we have

εD2Ld(qk−1, qk, el−1, el) ◦ ξ(qk, el) + εD1Ld(qk−1, qk, el−1, el) ◦ ξ(qk−1, el−1)

+ εD4Ld(qk−1, qk, el−1, el) ◦ η(qk, el) + εD3Ld(qk−1, qk, el−1, el) ◦ η(qk−1, el−1)

= ε
[∂F

∂q̇

∣∣∣−
d

(qk−1, qk, el−1, el) +
∂F

∂q̇

∣∣∣+
d
(qk, qk+1, el, el+1) − Q′′−

d (qk−1, qk) − Q′′+
d (qk, qk+1)

]
◦ ξ(qk, el)

+ ε
[∂F

∂ė

∣∣∣−
d

(qk−1, qk, el−1, el) +
∂F

∂ė

∣∣∣+
d
(qk, qk+1, el, el+1) − u−

d (el−1, el) − u+
d (el, el+1)

]
◦ η(qk, el)

+ εΔv(qk−1, qk, el−1, el) . (30)

Using the fact that Eq.(28) can also be expressed as

δLd =
[
D2Ld(qk−1, qk, el−1, el) + D1Ld(qk, qk+1, el, el+1)

] ◦ δqk + Δ
( − D1Ld(qk−1, qk, el−1, el) ◦ δqk−1

)

+
[
D4Ld(qk−1, qk, el−1, el) + D3Ld(qk, qk+1, el, el+1)

] ◦ δel + Δ
(−D3Ld(qk−1, qk, el−1, el) ◦ δel−1

)
, (31)

and substituting Eq.(24) into Eq.(30), and simplifying the result, we finally have

Δ
[
D1Ld(qk−1, qk, el−1,el) ◦ ξ(qk, el) + D3Ld(qk−1, qk, el−1,el) ◦ η(qk, el) + v(qk−1, qk, el−1, el)

]
= 0 , (32)

which implies the result.

5. Numerical example

Figure 1 represents a circuit of an electromotion
sensor to record mechanical vibrations. The circuit is
composed of a coil, a battery and a resistance. We
represent by m the mass of the armature, a denotes
the total rigidity coefficient, L1 = L1(x) represents
the self-induction in the coil, x represents the vertical
displacement from the position of the winding L1, we
denote by E the electromotive force of the battery and
R is the value of the resistance.

Fig.1.

The mechanical part of the system is described by
the displacement of the armature x, while the electri-
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cal part is described by the electric quantity q. Con-
sidering x and q as our generalized coordinates, the
kinetic plus magnetic energy of the system is

T =
1
2
mẋ2 +

1
2
L1(x)q̇2, (33)

the potential energy is:

V =
1
2
ax2 − mgx, (34)

and the dissipation function is:

F =
1
2
Rq̇2. (35)

With this the Lagrangian for the system is

L =
1
2
mẋ2 +

1
2
L1(x)q̇2 − 1

2
ax2 + mgx , (36)

where x, ẋ and q̇ are scalars and the configuration
space Q is 2-dimensional. The discrete Lagrangian of
the system is

Ld(xk−1, xk, ql−1, ql) =
h

2
m

(xk − xk−1

h

)2

+
h

2
L1

(
(1 − α)xk−1 + αxk

)
+ L1

(
αxk−1 + (1 − α)xk

)
2

(ql − ql−1

h

)2

− h

2
a
[(1 − α)xk−1 + αxk]2 + [αxk−1 + (1 − α)xk]2

2
+

h

2
mg(xk−1 + xk) , (37)

the discrete dissipation function is given by

F−
d =

1
2
hR

(ql − ql−1

h

)2

, F+
d =

1
2
hR

(ql+1 − ql

h

)2

, (38)

such that
∂F

∂q̇

∣∣∣−
d

= hR(ql − ql−1) ,
∂F

∂q̇

∣∣∣+
d

= −hR(ql+1 − ql) , (39)

and since in this case Q′′ = 0 and u = E, we have

Q′′
d = 0, ud = hE. (40)

Substituting Eqs.(37) to Eq.(40) into Eqs.(24) and dividing by h to restore the correct dimensionality, we
obtain the discrete Euler–Lagrange equations which correspond to the equations in differences

m
xk+1 − 2xk + xk−1

h2
− αL′

1

(
(1 − α)xk−1 + αxk

)
+ (1 − α)L′

1

(
αxk−1 + (1 − α)xk

)
4

(ql − ql−1

h

)2

− (1 − α)L′
1

(
(1 − α)xk + αxk+1

)
+ αL′

1

(
αxk + (1 − α)xk+1

)
4

(ql+1 − ql

h

)2

+a
[
α(1 − α)xk+1 +

(
α2 + (1 − α)2

)
xk + α(1 − α)xk−1

]
+ mgh = 0 ,

1
h

L1

(
(1 − α)xk + αxk+1

)
+ L1

(
αxk + (1 − α)xk+1

)
2

(ql+1 − ql

h

)

− 1
h

L1

(
(1 − α)xk−1 + αxk

)
+ L1

(
αxk−1 + (1 − α)xk

)
2

(ql − ql−1

h

)
+ 2R

ql+1 − ql−1

2h
− 2E = 0 , (41)

where L′
1 represents the derivative of L1 with respect to its argument. If the discrete Lagrangian (37) is

generalized difference-invariant under the infinitesimal transformation (26), and Eqs.(41) hold, the discrete
Lagrange–Maxwell mechanico-electrical system has a first integral of the form

[
− m

xk − xk−1

h
+

h

2
(1 − α)L′

1

(
(1 − α)xk−1 + αxk

)
+ αL′

1

(
αxk−1 + (1 − α)xk

)
2

×
(ql − ql−1

h

)2

− ha
((1 − α)2 + α2)xk−1 + 2α(1 − α)xk

2
+

h

2
mg

]
ξk
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−L1

(
(1 − α)xk−1 + αxk

)
+ L1

(
αxk−1 + (1 − α)xk

)
2

ql − ql−1

h
ηl + ν(xk, xk−1, ql, ql−1) = const. (42)

Once L1(x) is known, we can build the function v(xk, xk−1, ql, ql−1) for some specific infinitesimal transforma-
tions. For instance, if we choose L1(x) = const, and the infinitesimal transformations ξ = 1, η = 1, i.e.

x∗ = x + ε , q∗ = q + ε , (43)

we have: v = Rqk−1 + Eh, and the system possesses the first integral

−m
xk − xk−1

h
− ha

(
(1 − α)2 + α2

)
xk−1 + 2α(1 − α)xk

2
+ hmg − L1

ql − ql−1

h
+ Rql−1 + Eh = const. (44)
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