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Abstract

We apply the non-Noether symmetry theory for mechanical systems to Lagrange–Maxwell mechanico-electrical systems. For these systems,
we derive the Lutzky conserved quantities from the corresponding equations of motion, the non-conservative and the dissipative forces, and the
Lagrangian. Also, a condition that characterizes when a non-Noether symmetry leads to a Noether conservation law is presented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Symmetries play a key role in mathematics, physics and very
specially in mechanics. The study of those quantities which
are conserved by a mechanical system is highly relevant both
from a theoretical and from a practical point of view. Different
methods for finding such conserved quantities are known, those
based on Noether theory [1], which addresses the invariance of
the action functional under infinitesimal transformations, have
proved powerful and widely used. Several extensions to this
theory have been developed, that by Djanic and Vujanovic [2]
to non-conservative holonomic systems via generalized veloc-
ities being specially worth mentioning. Further, Li [3] built a
generalized Noether theory for non-linear non-holonomic dy-
namical systems, which has found wide application in the liter-
ature [4–7]. More recently, Crâşmǎreanu [8] has constructed a
Noether symmetry for 2D symmetry spinning particle.
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A different approach to the finding of conserved quanti-
ties is based on those Lie symmetries which leave the equa-
tions of motion invariant under infinitesimal transformations,
but do not necessarily do so with the action. These so-called
non-Noether conserved quantities have proven of central impor-
tance in the study of dynamical systems. Thus, for Lagrangian
systems, Lutzky has given such quantities (so-called Lutzky
conserved quantities) both for Lie point symmetries and for
velocity-dependent symmetries, none of them leaving the ac-
tion invariant, and moreover has pointed out how these sym-
metries may lead to Noether-like symmetries, whenever they
leave the action invariant [10–13]. Cicogna and Gaeta [14] have
further studied Lie point symmetries in mechanics, and have
obtained some conditions on their existence. Moreover, Hoj-
man [15] has proven a theorem which may be used to construct
some non-Noether conserved quantities (named after Hojman)
directly from Lie symmetries, without resorting to Lagrangian
or Hamiltonian functions. Further, Mei [16] has made major
progress in the study of Lie symmetries for constrained me-
chanical systems, though restricted to Noether conserved quan-
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tities. More recently, some of the authors [17] have made a
contribution to the study of non-Noether symmetries for non-
conservative dynamical systems.

In this Letter, we study the motion of a mechanico-electrical
dynamical system, under both conservative and non-conserva-
tive, and also dissipative forces. For this system, we have ex-
tended the study of the symmetries and derived an expression
for the Lutzky conserved quantities. Also, we have estabished
the conditions under which non-Noether symmetries result in
Noether symmetries.

2. Lagrange–Maxwell equations for mechanico-electrical
systems

A mechanico-electrical dynamical system couples a me-
chanical process to an electromagnetic process. The mechanical
part consists of N particles, described by n generalized coordi-
nates qs (s = 1, . . . , n). The electrodynamical part corresponds
to m electrical circuits consisting of linear conductors and ca-
pacitors. For circuit k, we denote by ik the current, by uk the
electric potential, by ek the capacitor charge (with ėk = ik), by
Rk the resistance and by Ck the capacitance.

The Lagrangian for such a mechanico-electrical system is

(1)L = T (q, q̇) − V (q) + Wm(q, ė) − We(q, e),

where T and V are, respectively, the kinetic and the potential
energy. The electric field energy and the magnetic field energy
are, respectively, defined by

(2)We =
m∑

k=1

1

2

e2
k

Ck

, Wm =
m∑

k=1

m∑
r=1

1

2
Lkr ikir ,

where Lkr (with k �= r) is the inductance on circuit k due to
circuit r and Lkk is the self-inductance of circuit k.

The motion of the system is given by the Lagrange–Maxwell
system of equations [18,19]:

d

dt

∂L

∂q̇s

− ∂L

∂qs

+ ∂F

∂q̇s

= Qs (s = 1, . . . , n),

(3)
d

dt

∂L

∂ėk

− ∂L

∂ek

+ ∂F

∂ėk

= uk (k = 1, . . . ,m),

where Qs (s = 1, . . . , n) are generalized, non-conservative
forces. This is a system of n+m ordinary differential equations
with respect to the n generalized coordinates qs (s = 1, . . . , n)
and the m generalized electric quantities ek (k = 1, . . . ,m). The
dissipative function F of the system is given by

(4)F = Fe(ė) + Fm(q, q̇),

where the electric dissipation function is

(5)Fe = 1

2

m∑
k=1

Rki
2
k = 1

2

m∑
k=1

Rkė
2
k,

and Fm is the function for the viscous frictional damping forces,
and thus, −∂F/∂q̇s (s = 1, . . . , n) correspond to dissipative
forces.

When the mechanico-electrical system satisfies the condi-
tions Qs − ∂F/∂q̇s = 0 (s = 1, . . . , n) and uk − ∂F/∂ėk = 0
(k = 1, . . . ,m), system (3) reduces to a set of Lagrange equa-
tions of the form

d

dt

∂L

∂q̇s

− ∂L

∂qs

= 0 (s = 1, . . . , n),

(6)
d

dt

∂L

∂ėk

− ∂L

∂ek

= 0 (k = 1, . . . ,m).

In such a case, the system corresponds to a Lagrangian
mechanico-electrical system.

3. Non-Noether symmetries and Lutzky conserved
quantities for Lagrange–Maxwell mechanico-electrical
systems

The system of Lagrange–Maxwell equations (3) for the
mechanico-electrical system can be written in compact form as

q̈s = αs(q, q̇, e, ė, t) (s = 1, . . . , n),

(7)ëk = βk(q, q̇, e, ė, t) (k = 1, . . . ,m).

Let us introduce infinitesimal transformations with respect to
the generalized coordinates, electric charges and time:

t∗ = t + εξ0(q, e, t), q∗
s = qs + εξs(q, e, t),

(8)e∗
k = ek + εηk(q, e, t),

where ε is a small parameter, and ξ0, ξs and ηk (s = 1, . . . , n;
k = 1, . . . ,m) are the corresponding infinitesimal generators.
To assume system (7) invariant under the infinitesimal transfor-
mations (8) leads to the determining equations

ξ̈s − q̇s ξ̈0 − 2αsξ̇0 = X(1)(αs) (s = 1, . . . , n),

(9)η̈k − ėk ξ̈0 − 2βkξ̇0 = X(1)(βk) (k = 1, . . . ,m).

From here onwards, we will use the convention of summation
over repeated indexes. Operator X(1) is the generator of the first
extended group [9], and is given by

X(1) = ξ0
∂

∂t
+ ξs

∂

∂qs

+ ηk

∂

∂ek

+ (ξ̇s − q̇s ξ̇0)
∂

∂q̇s

(10)+ (η̇k − ėk ξ̇0)
∂

∂ėk

,

and the vector field

(11)
d

dt
= ∂

∂t
+ q̇s

∂

∂qs

+ ėk

∂

∂ek

+ αs

∂

∂q̇s

+ βk

∂

∂ėk

,

supposes derivation with respect to time along the trajectories
of the system of equations (7). Thus, for any function φ, we
have

(12)φ̇ = ∂φ

∂t
+ q̇s

∂φ

∂qs

+ αs

∂φ

∂q̇s

+ ėk

∂φ

∂ek

+ βk

∂φ

∂ėk

.

Whenever the infinitesimal transformation (8) leave equations
(7) invariant but do not leave the action invariant, we have a
non-Noether symmetry for the Lagrange–Maxwell mechanico-
electrical system. Eqs. (9) can be regarded as a criterion for
non-Noether symmetries:
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Criterion 1. The Lagrange–Maxwell mechanico-electrical sys-
tem given by Eqs. (7) possesses a non-Noether symmetry if the
infinitesimal generators ξ0, ξs and ηk satisfy the determining
equations (9) and do not leave the action of the system invari-
ant.

It can be easily seen [17] that the relations between the terms
αs , βk , Qs − ∂F/∂q̇s , uk − ∂F/∂ėk and the Lagrangian L are
given by

∂αs

∂q̇s

− ∂

∂q̇l

(
Mls

D1

(
Qs − ∂F

∂q̇s

))
+ d

dt
(lnD1) = 0

(s, l = 1, . . . , n),

∂βk

∂ėk

− ∂

∂ėj

(
Njk

D2

(
uk − ∂F

∂ėk

))
+ d

dt
(lnD2) = 0

(13)(k, j = 1, . . . ,m),

where

(14)D1 = det
[
∂2L/∂q̇s∂q̇l

]
, D2 = det

[
∂2L/∂ėk∂ėj

]
,

and Mls and Njk are, respectively, the cofactor of ∂2L/∂q̇s∂q̇l

and of ∂2L/∂ėk∂ėj for the matrices given by the second deriv-
atives.

Theorem 1. The Lagrange–Maxwell mechanico-electrical sys-
tem given by (7) possesses a Lutzky conserved quantity of the
form

Φ = 2

(
∂ξs

∂qs

− q̇s

∂ξ0

∂qs

)
+ 2

(
∂ηk

∂ek

− ėk

∂ξ0

∂ek

)
− Nξ̇0

+ X(1)(lnD1D2) −
∫ [

X(1)

[
∂

∂q̇s

(
Mls

D1

(
Ql − ∂F

∂q̇l

))

+ ∂

∂ėk

(
Njk

D2

(
uj − ∂F

∂ėj

))]

− ξ̇0
∂

∂q̇s

(
Mls

D1

(
Ql − ∂F

∂q̇l

))

(15)− ξ̇0
∂

∂ėk

(
Njk

D2

(
uj − ∂F

∂ėj

))]
dt,

if the generators ξ0, ξs and ηk satisfy the determining equa-
tions (9), and do not leave invariant the action of the system.

Proof. Let us pass all the terms in Eqs. (9) to the left-hand
side, and denote the resulting expressions by Πs and Πk . Their
partial derivatives with respect to q̇s and ėk are respectively

∂Πs

∂q̇s

= d

dt

[
2

(
∂ξs

∂qs

− q̇s

∂ξ0

∂qs

)
− nξ̇0

]

− X(1)

(
∂αs

∂q̇s

)
− ∂αs

∂q̇s

ξ̇0,

∂Πk

∂ėk

= d

dt

[
2

(
∂ηk

∂ek

− ėk

∂ξ0

∂ek

)
− mξ̇0

]

(16)− X(1)

(
∂βk

∂ėk

)
− ∂βk

∂ėk

ξ̇0.
If ξ0, ξs and ηk satisfy Eqs. (9), then, from Eqs. (13) and (14),
we have:

−X(1) ∂αs

∂q̇s

− ξ̇0
∂αs

∂q̇s

= d

dt
X(1)(lnD1) − X(1) ∂

∂q̇l

[
Mls

D1

(
Qs − ∂F

∂q̇s

)]

+ ξ̇0
∂

∂q̇l

[
Mls

D1

(
Qs − ∂F

∂q̇s

)]
,

−X(1) ∂βk

∂ėk

− ξ̇0
∂βk

∂ėk

= d

dt
X(1)(lnD2) − X(1) ∂

∂ėj

[
Njk

D2

(
uk − ∂F

∂ėk

)]

(17)+ ξ̇0
∂

∂ėj

[
Njk

D2

(
uk − ∂F

∂ėk

)]
.

With this, we may express (16) in the form

∂Πs

∂q̇s

= d

dt

[
2

(
∂ξs

∂qs

− q̇s

∂ξ0

∂qs

)
− nξ̇0 + X(1)(lnD1)

]

− X(1)

[
∂

∂q̇l

(
Mls

D1

(
Qs − ∂F

∂q̇s

))]

− ξ̇0
∂

∂q̇l

(
Mls

D1

(
Qs − ∂F

∂q̇s

))
,

∂Πk

∂ėk

= d

dt

[
2

(
∂ηk

∂ek

− ėk

∂ξ0

∂ek

)
− mξ̇0 + X(1)(lnD2)

]

− X(1)

[
∂

∂ėj

(
Njk

D2

(
uk − ∂F

∂ėk

))]

(18)− ξ̇0
∂

∂ėj

(
Njk

D2

(
uk − ∂F

∂ėk

))
.

Furthermore, if ξ0, ξs and ηk satisfy both Πs = Πk = 0 and
∂Πs/∂q̇s = ∂Πk/∂ėk = 0, s = 1, . . . , n; k = 1, . . . ,m, then
Eqs. (18) imply that Φ , as given by Eq. (15), is a conserved
quantity. �

This is the main result in the present Letter. It is important to
stress that even though it was necessary to postulate that the
equations of the motion were derived from a Lagrangian L,
with generalized forces Qs and electric potentials uk in order
to arrive at the conserved quantity (15), we did not assume that
the symmetry group leaves the action invariant.

From this, we can give the following significant result:

Theorem 2. If the infinitesimal-transformation generators ξ0,
ξs and ηk (s = 1, . . . , n; k = 1, . . . ,m) satisfy Eqs. (9), then
the Lagrange–Maxwell mechanico-electrical system given by
(7) has a Lutzky conserved quantity of the form

Φ = 2

(
∂ξs

∂qs

− q̇s

∂ξ0

∂qs

)
+ 2

(
∂ηk

∂ek

− ėk

∂ξ0

∂ek

)
− (n + m)ξ̇0

(19)+ X(1)
(
ln(D1D2)

) − X(1)(f )

if and only if there exists a function f = f (q, q̇, e, ė, t) =
f1(q, q̇, e, ė, t) + f2(q, q̇, e, ė, t) that satisfies

df1 = ∂
(

Mls

(
Qs − ∂F

))
,

dt ∂q̇l D1 ∂q̇s
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(20)
df2

dt
= ∂

∂ėj

(
Njk

D2

(
uk − ∂F

∂ėk

))
.

From Theorem 2, we can obtain a Lutzky conserved quantity
associated to a mechanico-electrical system, and the system of
equations (20) can be understood as a restrictive condition that
corresponds to generalized forces.

4. Non-Noether symmetries and Lutzky conserved
quantities for a Lagrangian mechanico-electrical system

Let us suppose that the mechanico-electrical system is now
a Lagrangian one, and that the equations of motion can be ex-
pressed in the form

q̈s = α′
s(t,q, q̇, e, ė) (s = 1, . . . , n),

(21)ëk = β ′
k(t,q, q̇, e, ė) (k = 1, . . . ,m).

Supposing that the equations of motion (21) are invariant under
the infinitesimal transformations (8), we obtain the correspond-
ing set of determining equations for this case:

ξ̈s − q̇s ξ̈0 − 2α′
s ξ̇0 = X(1)(α′

s), s = 1, . . . , n,

(22)η̈k − ėk ξ̈0 − 2β ′
kξ̇0 = X(1)(β ′

k), k = 1, . . . ,m,

where operator X(1) is the generator of the first extended group.
We may consider the system of equations (22) as a criterion

for non-Noether symmetries:

Criterion 2. The Lagrangian mechanico-electrical system
given by Eqs. (21) possesses a non-Noether symmetry if the
infinitesimal generators ξ0(q, e, t), ξs(q, e, t) and ηk(q, e, t)
(s = 1, . . . , n; k = 1, . . . ,m) satisfy the determining equations
(22) and do not leave the action of the system invariant.

To obtain the Lutzky conserved quantities, we need two re-
sults. On one hand, since the equations of motion (21) are in
this case of the form (6), we may rewrite them equivalently as:

∂2L

∂q̇s∂q̇l

q̈l = ∂L

∂qs

− ∂2L

∂q̇s∂t
− ∂2L

∂q̇s∂ql

q̇l,

(23)
∂2L

∂ėk∂ėj

ëj = ∂L

∂ek

− ∂2L

∂ėk∂t
− ∂2L

∂ėk∂ej

ėj ,

and we can deduce the following relations between the α′
s , the

β ′
k and the Lagrangian L:

(24)
∂α′

s

∂q̇s

+ d

dt
(lnD1) = 0,

∂β ′
k

∂ėk

+ d

dt
(lnD2) = 0,

with

D1 = det
[
∂2L/∂q̇s∂q̇l

]
(s, l = 1, . . . , n),

(25)D2 = det
[
∂2L/∂ėk∂ėj

]
(k, j = 1, . . . ,m).

On the other hand, we remark that if ξ0, ξs and ηk (s = 1, . . . , n;
k = 1, . . . ,m) satisfy the system of equations (22), it can be
shown [10] that

(26)Ẋ(1)(φ) = X(1)(φ̇) + ξ̇0φ̇
holds for any function φ(q, q̇, e, ė, t). With these two results,
one can prove

Theorem 3. The Lagrangian mechanico-electrical system
given by (21) possesses a Lutzky conserved quantity of the form

Φ = 2

(
∂ξs

∂qs

− q̇s

∂ξ0

∂qs

)
+ 2

(
∂ηk

∂ek

− ėk

∂ξ0

∂ek

)
− (n + m)ξ̇0

(27)+ X(1)
(
ln(D1D2)

)
,

if the infinitesimal-transformation generators ξ0, ξs and ηk (s =
1, . . . , n; k = 1, . . . ,m) satisfy the determining equations (22),
and do not leave invariant the action of the system.

Theorem 3 can be proven in a similar way to Theorem 1.
With this result, we characterize the conserved quantity Φ . It
should be noted, once again, that it is necessary to assume the
equations of the motion being derived from a Lagrangian, but
that it is not necessary to assume the action being invariant.

5. Noether symmetry derived from a non-Noether
symmetry for a mechanico-electrical system

We will now consider the case when the symmetry does pre-
serve the action of the system. The main result is

Theorem 4. If the Lagrange–Maxwell mechanico-electrical
system possesses a Lutzky conserved quantity of the form

Φ̃ = − ∂2

∂q̇l∂q̇s

[
Mls

D1
(ξs − q̇sξ0)

(
Qs − ∂F

∂q̇s

)]

− ∂2

∂ėj ∂ėk

[
Njk

D2
(ηk − ėkξ0)

(
uk − ∂F

∂ėk

)]

−
∫ (

X(1) − ξ̇0
)[ ∂

∂q̇s

(
Mls

D1

(
Ql − ∂F

∂q̇l

))

(28)+ ∂

∂ėk

(
Njk

D2

(
uj − ∂F

∂ėj

))]
dt,

then, the symmetry transformation group given by ξ0, ξs and ηk

leaves invariant the action of the system, and the non-Noether
symmetry leads to a Noether symmetry with a Noether con-
served quantity of the form

I = ξ0L + (ξs − q̇sξ0)
∂L

∂q̇s

+ (ηk − ėkξ0)
∂L

∂ėk

+ GN

(29)= const,

whenever a gauge function GN can be found.

Proof. We can verify by direct calculation that for any func-
tions ξ0, ξs and ηk we have

X(1)

(
∂2L

∂q̇l∂q̇s

)
= ∂2X(1)(L)

∂q̇l∂q̇s

− ∂L

∂q̇r

∂(Ars)

∂q̇l

− Ars

∂2L

∂q̇r∂q̇l

− Arl

∂2L

∂q̇r∂q̇s

,
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X(1)

(
∂2L

∂ėj ∂ėk

)
= ∂2X(1)(L)

∂ėj ∂ėk

− ∂L

∂ėp

∂(Cpk)

∂ėj

− Cpk

∂2L

∂ėp∂ėj

− Cpj

∂2L

∂ėp∂ėk

,

(30)(s, l, r = 1, . . . , n; k, j,p = 1, . . . ,m),

where

Arl = ∂ξr

∂ql

− q̇r

∂ξ0

∂ql

− ξ̇0δrl,

(31)Cpj = ∂ηp

∂ej

− ėp

∂ξ0

∂ej

− ξ̇0δpj .

Noether’s theorem states [7] that if ξ0, ξs and ηk generate
a Noether symmetry corresponding to the Lagrange–Maxwell
mechanico-electrical system, there exists a function GN(t,q, e)
such that

X(1)(L) + ξ̇0L + (ξr − q̇r ξ0)

(
Qr − ∂F

∂q̇r

)

(32)+ (ηp − ėpξ0)

(
up − ∂F

∂ėp

)
= −ĠN .

Since the right-hand side of Eq. (32) is linear in terms of the
generalized velocities and electric currents, we have

∂2X(1)(L)

∂q̇l∂q̇s

= −∂2(ξ̇0L)

∂q̇l∂q̇s

− ∂2

∂q̇l∂q̇s

[
(ξr − q̇r ξ0)

(
Qr − ∂F

∂q̇r

)]
,

∂2X(1)(L)

∂ėj ∂ėk

(33)= −∂2(ξ̇0L)

∂ėj ∂ėk

− ∂2

∂ėj ∂ėk

[
(ηp − ėpξ0)

(
up − ∂F

∂ėp

)]
,

where we have used that

∂2

∂q̇l∂q̇s

[
(ηp − ėpξ0)

(
up − ∂F

∂ėp

)]
= 0,

∂2

∂ėj ∂ėk

[
(ξr − q̇r ξ0)

(
Qr − ∂F

∂q̇r

)]
= 0.

Substituting Eqs. (33) into Eqs. (30), we obtain

X(1)

(
∂2L

∂q̇l∂q̇s

)
= ξ̇0

∂2L

∂q̇l∂q̇s

− Brs

∂2L

∂q̇r∂q̇l

− Brl

∂2L

∂q̇r∂q̇s

− ∂2

∂q̇l∂q̇s

[
(ξr − q̇r ξ0)

(
Qr − ∂F

∂q̇r

)]
,

X(1)

(
∂2L

∂ėj ∂ėk

)
= ξ̇0

∂2L

∂ėj ∂ėk

− Dpk

∂2L

∂ėp∂ėj

− Dpj

∂2L

∂ėp∂ėk

(34)

− ∂2

∂ėj ∂ėk

[
(ηp − ėpξ0)

(
up − ∂F

∂ėp

)]
,

where

(35)Bls = ∂ξl

∂qs

− q̇l

∂ξ0

∂qs

, Djk = ∂ηj

∂ek

− ėj

∂ξ0

∂ek

.

Let Mts and Nνk be, respectively, the cofactors of the ele-

ments ∂2L
∂q̇t ∂q̇s

and ∂2L
∂ėν∂ėk

of the matrices formed by these second
derivatives. From the properties of determinants, we have

(36)Mts

∂2L

∂q̇t ∂q̇r

= D1δsr , Nνk

∂2L

∂ėν∂ėp

= D2δkp,

and

(37)Mts

∂

∂ρ

∂2L

∂q̇t ∂q̇s

= ∂D1

∂ρ
, Nνk

∂

∂γ

∂2L

∂ėν∂ėk

= ∂D2

∂γ
,

with D1 and D2 given by (14), and where ρ stands for any of
qs , q̇s and t , and γ stands for any of ek , ėk and t .

Multiplying each of the two equations in (34), respectively,
by Mts and Nνk , summing on the repeated indexes, and using
Eqs. (36) and (37), we have

X(1)(lnD1)

= nξ̇0 − 2Brr − ∂2

∂q̇l∂q̇s

[
Mls

D1
(ξs − q̇sξ0)

(
Qs − ∂F

∂q̇s

)]
,

X(1)(lnD2)

(38)

= mξ̇0 − 2Dpp − ∂2

∂ėj ∂ėk

[
Njk

D2
(ηk − ėkξ0)

(
uk − ∂F

∂ėk

)]
.

From Eqs. (38) and (15), one can prove the conservation of Φ

whenever the symmetry group leaves the action invariant. �
In this case, however, we have the classical Noether in-

variance result for the Lagrange–Maxwell mechanico-electrical
system. According to Lutzky’s ideas [11], we may conjecture
that the Lutzky conserved quantities (15) and (27) need not be
“new” conserved quantities. That is, they may be represented in
terms of the Noether invariants of the system. In fact, Noether
invariants form a complete set of conserved quantities; for the
mechanico-electrical system, any additional constant of the mo-
tion must necessarily be a function of the Noether invariants.

6. Conclusion

In this Letter, we have extended non-Noether symmetries to
Lagrangian and Lagrange–Maxwell mechanico-electrical sys-
tems with mechanico-electrical coupling and dissipation func-
tions. Our results represent a significant approach to finding
conserved quantities for these systems.
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