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Abstract

We analyze a family of solutions of the diffusion equation, which also satisfy an

additional fractional equation, in (1þ 1) and (3þ 1) dimensions. The solutions may be

interpreted either as coupled solutions of the diffusion equation or as a diffusion process

with internal degrees of freedom.
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1. Introduction

Diffusion equations have found many applications in fields as diverse as

physics, biology, ecology and the social sciences. A diffusion equation comes

into play whenever the time variation of some variable in a space neighborhood

is controlled by the net flux (in minus out) of that variable. In its original form

otuðx; tÞ � o2xuðx; tÞ ¼ 0 ð1Þ

the equation takes into account only local effects, the operator kernels asso-

ciated to the first and second terms being d0ðt � t0Þ and d00ðx� x0Þ. Non-local
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effects in time and space may be described by non-local kernels or, as already

proposed by several authors [1–4] by replacing the first and second derivatives
by fractional derivatives. Here we argue that some non-local effects may be

taken into account even for solutions of the original diffusion equation if, in

addition to Eq. (1), we require the solutions to obey

Aoa
t

�
þ Bob

x

�
uðx; tÞ ¼ 0 ð2Þ

where, with a; b 2 Rþ; oa
t and ob

x are fractional derivatives and, for consistency,

for some power n of the operator

Aoa
t

�
þ Bob

x

�n ¼ ot � o2x ð3Þ

In the simplest case, a ¼ 1=2, b ¼ 1 and n ¼ 2, the constraint

ðAo1=2t þ BoxÞuðx; tÞ ¼ 0 ð4Þ

together with Eq. (3) means that, in addition to the diffusion equation, the local

flow of uðx; tÞ has a non-local relation to the time evolution. In this particular

case, the constraints (3) and (4) require A and B to be, at least, 2� 2 matrices.

This leads, as an interesting consequence, to a simple mechanism to introduce

couplings between different diffusion processes.

Solutions of the diffusion equation may be positive or negative, real or
complex quantities. It all depends on the initial conditions. In the case of

complex solutions, the real and imaginary parts do not mix and therefore the

solution represents two independent diffusion processes. Whenever the coeffi-

cients A and B in Eq. (4) are matrices or complex quantities the resulting dif-

fusions become coupled processes. Coupled diffusion processes, as used for

example in population dynamics of several species [5], are usually obtained by

the introduction of explicit decay and growth interaction factors in the equa-

tions. Here a different type of coupling is obtained which, without modifying
the diffusion equation, forces the solutions to satisfy an additional constraint.

In Sections 2 and 3 we treat in detail the case a ¼ 1=2, b ¼ 1, n ¼ 2 for 1þ 1

and 1þ 3 dimensions. The 1þ 1 case was already briefly discussed in a pre-

vious work [6].

2. The square root equation in (1+1) dimensions

Taking into account the fact that a solution of the diffusion equation can be

written as

uðx; tÞ ¼
Z 1

�1
ûuðkÞe�k2te�ikx dk ð5Þ
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space and time fractional derivatives may be defined in a symmetric way in the

framework of the standard Fourier transform

oauðsÞ
osa

! ð�ijÞaûuðjÞ ð6Þ

For the diffusion equation in one space dimension, otuðx; tÞ � o2xuðx; tÞ ¼ 0, we

have four possible consistent definitions of the fractional time derivative as-

sociated to the square root operator. The possible definitions are:

o1=2uðx; tÞ
ot1=2

¼
Z 1

�1
ðikÞûuðkÞe�k2te�ikx dk ð7Þ

o1=2uðx; tÞ
ot1=2

¼
Z 1

�1
ð�ikÞûuðkÞe�k2te�ikx dk ð8Þ

o1=2uðx; tÞ
ot1=2

¼
Z 1

�1
ðijkjÞûuðkÞe�k2te�ikx dk ð9Þ

o1=2uðx; tÞ
ot1=2

¼
Z 1

�1
ð�ijkjÞûuðkÞe�k2te�ikx dk ð10Þ

than can be summarized as follows

o1=2uðx; tÞ
ot1=2

¼
Z 1

�1
�iðdk þ ð1� dÞjkjÞûuðkÞe�k2te�ikx dk ð11Þ

where d ¼ 1; 0 and � ¼ 1;�1.

The square root equation in one space dimension is:

A
o1=2

ot1=2

 
þ B

o

ox

!
wðx; tÞ ¼ 0 ð12Þ

where Eq. (3) requires A and B to be matrices satisfying the conditions:

A2 ¼ I ; B2 ¼ �I ð13Þ

fA;Bg � ABþ BA ¼ 0 ð14Þ

being wðx; tÞ multidimensional with at least two scalar space-time components.

Each scalar component satisfies the diffusion equation. The components may

be interpreted either as complex diffusion solutions associated to internal de-

grees of freedom or as coupled diffusion processes. In [6] the solutions wðx; tÞ
were named diffunors.

Let us consider the following realization of the above algebra in terms of

real matrices 2� 2 associated to the Pauli matrices:

A ¼ 1 0

0 �1

� �
; B ¼ 0 1

�1 0

� �
ð15Þ
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From Eq. (5) it follows that the solution of the fractional equation (12) may be

written as follows

u1ðx; tÞ
u2ðx; tÞ

� �
¼

R1
�1 ûu1ðkÞe�k2te�ikx dkR1
�1 ûu2ðkÞe�k2te�ikx dk

 !
ð16Þ

By inserting it into (12) we obtain

�ðdk þ ð1� dÞjkjÞ �k
k ��ðdk þ ð1� dÞjkjÞ

� �
ûu1ðkÞ
ûu2ðkÞ

� �
¼ 0: ð17Þ

according to the different possible definitions of the time fractional derivative.
In this context, the solutions are the following

ûu1ðkÞ
ûu2ðkÞ

� �
¼ 1

1

� �
;

1

�1

� �
;

1
k
jkj

� �
;

1

� k
jkj

� �
� /ðkÞ ð18Þ

associated respectively to the possible values of the parameters: d ¼ 0, � ¼ 1;

d ¼ 0, � ¼ �1; d ¼ 1, � ¼ 1; d ¼ 1, � ¼ �1, and being /ðkÞ an arbitrary func-

tion of k. From the above expression, we obtain that each one of the two

components in Eq. (12) is complex and, thus, it might be associated to two real

diffusion processes. For each choice in Eq. (18) one obtains therefore four

coupled real solutions of the scalar diffusion equation.

As an example, let us consider the case /ðkÞ ¼ e�kk2 and the choice of the
fractional derivative parameter d ¼ 0: We get the following initial conditions

u1ðx; 0Þ
u2ðx; 0Þ

� �
¼

p
k

� �1=2
e�x2=4k

�2�i x
2k

P1
k¼1

1
ð2k�1Þ!! � x2

2k


 �k�1

0
@

1
A ð19Þ

which generate the solutions associated to the two possible values of �:

u1ðx; tÞ
u2ðx; tÞ

� �
¼

p
kþt


 �1=2
e�x2=4ðkþtÞ

�2�i x
2ðkþtÞ

P1
k¼1

1
ð2k�1Þ!! � x2

2ðkþtÞ


 �k�1

0
B@

1
CA ð20Þ

In this case, the first component u1 is pure real while the second one, u2, is pure
imaginary and it is given in terms of a degenerate hypergeometric function. In

this case we have two real coupled processes.

3. The square root equation in (3+1) dimensions

A natural generalization of Eq. (12) to the three space dimensions is the

following
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A
o1=2

ot1=2

 
þ~BB: ~rr

!
wðx; tÞ ¼ 0 ð21Þ

where wðx; tÞ is a set of four complex functions, A and Bi are 4� 4 Dirac

matrices [7] satisfying the conditions:

A2 ¼ I ; fBi;Bjg ¼ �2dij; fA;Big ¼ 0 ð22Þ

Taking into account that every component of (21) must satisfy the three di-

mensional diffusion equation ut � Du ¼ 0, being

uð~xx; tÞ ¼
Z 1

�1
ûuð~kkÞe�~kk2te�i~kk:~xx d3k ð23Þ

we can write the solution of the fractional equation (21) as follows

u1ð~xx; tÞ
u2ð~xx; tÞ
u3ð~xx; tÞ
u4ð~xx; tÞ

0
BB@

1
CCA ¼

R1
�1 ûu1ð~kkÞe�~kk

2te�i~kk:~xx d3kR1
�1 ûu2ð~kkÞe�~kk

2te�i~kk:~xx d3kR1
�1 ûu3ð~kkÞe�~kk

2te�i~kk:~xx d3kR1
�1 ûu4ð~kkÞe�~kk

2te�i~kk:~xx d3k

0
BBBB@

1
CCCCA ð24Þ

with ~kk ¼ ðk1; k2; k3Þ: Inserting into (21) for the case d ¼ 0, � ¼ 1, we obtain:

j~kkj 0 �k3 �k1 þ ik2
0 j~kkj �k1 � ik2 k3
k3 k1 � ik2 �j~kkj 0

k1 þ ik2 �k3 �j~kkj

0
BB@

1
CCA

ûu1ð~kkÞ
ûu2ð~kkÞ
ûu3ð~kkÞ
ûu4ð~kkÞ

0
BBB@

1
CCCA ¼ 0: ð25Þ

which gives a set of four basic solutions in the Fourier space:

ûu1ð~kkÞ
ûu2ð~kkÞ
ûu3ð~kkÞ
ûu4ð~kkÞ

0
BBB@

1
CCCA ¼

1

0
k3
j~kkj

k1 þ ik2
j~kkj

0
BBBBBB@

1
CCCCCCA
;

0

1
k1 � ik2

j~kkj
� k3
j~kkj

0
BBBBBB@

1
CCCCCCA
;

k3
j~kkj

k1 þ ik2
j~kkj
1

0

0
BBBBBB@

1
CCCCCCA
;

k1 � ik2
j~kkj
� k3
j~kkj
0

1

0
BBBBBB@

1
CCCCCCA

� /ð~kkÞ

ð26Þ

Thus, each solution of (21) is associated to four complex diffusion processes or,

equivalently, to eight real diffusion processes, with initial conditions related by

the above Fourier transforms. Similar results are obtained for the other values

of the parameters d and �:
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