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Abstract
We present a generalization of the linear one-dimensional diffusion equation by com-
bining the fractional derivatives and the internal degrees of freedom. The solutions are
constructed from those of the scalar fractional diffusion equation. We analyze the in-
terpolation between the standard diffusion and wave equations defined by the fractional
derivatives. Our main result is that we can define a diffusion process depending on the
internal degrees of freedom associated to the system.
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1. Introduction

It is well known the approach of Dirac to obtain his famous equation from the Klein-Gordon
equation [1]. The free Dirac equation can be considered as the root square of the Klein-Gordon
equation; In a more general context Morinaga and Nono [2]| analyzed the integer s-root of the
partial differential equations of the form

i1l
2 srggt= .

The s—root is the first order system
n 2

> o _d—q’ = (2)
— dx;

being oy, ..., matrices. From the physical point of view the ay describe internal degrees
of freedom of the associated system.

The purpose of the paper is to generalize the above study to the case of fractional derivatives.
In this context, we will consider the fractional diffusion equations with internal degrees of
freedom obtained by generalization of the s-roots of the standard scalar linear diffusion equation.
Thus, it is natural to consider the space and time fractional derivatives in a symmetric way
through the framework of the standard Fourier transform

Ua:fﬁ). —3 (—iK)™ii(x) Y

being k& € R.
In a future work we will consider the different following definitions of time and space frac-
tional derivatives [3] which appear in other contexts:
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e The time fractional derwvative [4] of order a > 0 for a sufficiently well-behaved causal
function u(t) is defined as follows

d‘u (?) 1 /4 ”rm) . (4)
Troe Al = dr
di™ . [(m—a) Jy (¢—7)otl-m

where m = 1,2,..., and 0 < m — 1 < @ < m. This definition requires the absolute
mtegrability of the derivative of order m.

o The symmetric space fractional derivative [5] of order @ > 0 of a sufficiently well-behaved
function u(x),z € R, is defined as the pseudo-differential operator characterized in its
Fourier representation by

(e}

—u(z) — - | & |* (k) (5)

d| x|

as before being x € R.

2. The Square Root of the Standard Linear Diffusion Equation

A possible definition of the root-square of the standard diffusion equation (SDE) in one
space dimension, #; — U, = 0, is the following:

a3 ) ,
A——r+ B—)t(z,t) =0 :
(46)11"’3 : BHr]L‘(I’t) (6)
where A and B are matrices satisfying the conditions:
A’=1 |, B*=-I (7)
{A,B} = AB+BA=0 (8)

being v(x,t) multidimensional with at least two scalar space-time components. Also, every
scalar component satisfies the SDE. Such solutions can be interpreted as probabality distributions
with internal structure associated to wnternal degrees of freedom of the system. We could name
them diffunors in analogy with the spinors in Quantum Mechanics,

We have two possible realizations of the above algebra in terms of real matrices 2 x 2
associated to the Pauli matrices:

ST I e 1 .
‘4(10) .B_(_l D) (10)

Other realizations involving complex bidimensional matrices are possible, but taking into
account the reference to the diffusion equation we ounly consider the real representations.
The solutions of (6) are related to the SDE in a simple way. As a an illustration. let us
2 ; ozt
consider the representation (9), thus ¥:(x,t) = ( :(Ar t;
such that x(z,t) = tple,t). We have two general independent solutions of (6):

;(_I.!}( } ) and ~,:(J‘.!)( _ll ) (11)




Fractional Diffusion Equations with Internal Degrees of Freedom 493

being y(x, t) solution of SDE. The solutions (11) represent two possible probability distri-
butions depending not only on the space and time coordinates, but also on the internal degrees
of freedom. This effect could modelate the diffusion of particles with internal structure.

The equation (6) is not time reversible but it is invariant under space reflection as the
underlying SDE. More precisely, in the representation given by (9) a possible representation of
the parity operator is P = APY, such that P": 2 — —z.

3. The 1/3-root of the Standard Linear Diffusion Equation

As in the previous section, a possible definition of the 1/3-root of the SDE in one space
dimension, w; — u,, = 0, is the following:
gL/3 £32/3

(M /3 +4 '31.2/:1

) ¥ (z,t) =0 (12)

where M and N are matrices satisfying the conditions:

M{=],N® = —JI (13)
MMN +MNM +NMM = 0 (14)
NNM + NMN +MNN = 0 (15)

Being ¥(z,t) multidimensional with at least three scalar space-time components. As before,
we could name it diffunors with three components, in analogy with the spinors in Quantum
Mechanics. A possible realization is in terms of the matrices 3 x 3 associated to the Silvester
algebra [6].

0 0 1 00 1
M=|w 0 0] , N=0| w 0 o0 (16)
0 w 0 0 w? D

where w is a cubic root of unity and € a cubic root of the negative unity. As in the previous
section, it can be made similar considerations about the solutions, but now we have three
internal degrees of freedom.

4. General Time and Space-Fractional Diffusion Equations

Combining the results of the previous sections, we can consider the general fractional evo-

lution equations:
6:: a;a‘

A + B—)¥(z,t) =0 17
(Agps + Bys)¥(2,0) (7)
where the dynamics depends on the definition of the fractional derivatives, the orders & and 3
and on the structure of the matrices A and B. We can consider the following general consider-
ations:

o If A and B are the identity, the equation (17) defines a sort of interpolation between the
standard diffusion equation, u; — u,, = 0, and the standard wave equation, wuy — Uz, = 0
, while 0 < o £ 2and 0 < # < 2. The solutions are well studied in [7]-[9] when the
definition of fractional derivatives (4)-(5) are considered.
When 3 = 2, the absolute moments of even order are the following

L(2n 1)

)= I'lan+1)

" (18)

being n=10,1,2,....
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o If we consider the algebraic structure defined by (8) with 0 < @ < 1 and 0 < 3 < 1,
we define other alternative to the above interpolation through the Dirac (o = 1,8 = 1)

equation which includes the effects associated to the internal degrees of freedom. In
this case, the solution of the equation is related to the solutions of the above fractional
diffusion-wave equations when 4 = B = [I.

e With the definition (3) of fractional derivatives, the absolute moments of even order for
each one of the two degrees of freedom of (6) are the following
_T(2n+1)

2n SA=RT .
== ['n+1) t (19)

with n =0, 1,2,..., since the associated functions satisfy the standard diffusion equation.
3 1
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