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Through fractional calculus and following the method used by Dirac to obtain his
well-known equation from the Klein-Gordon equation, we analyze a possible inter-
polation between the Dirac and the diffusion equations in one space dimension. We
study the transition between the hyperbolic and parabolic behaviors by means of
the generalization of the D’Alembert formula for the classical wave equation and
the invariance under space and time inversions of the interpolating fractional evo-
lution equations Dirac like. Such invariance depends on the values of the fractional
index and is related to the nonlocal property of the time fractional differential
operator. For this system of fractional evolution equations, we also find an associ-
ated conserved quantity analogous to the Hamiltonian for the classical Dirac
case. © 2005 American Institute of Physics. �DOI: 10.1063/1.2121167�

. INTRODUCTION

Following the well-known Dirac’s approach,19 the free Dirac equation can be considered as
he square root of the Klein-Gordon equation. In a more general context Morinaga and Nono11

nalyzed the integer s-root of the partial differential equations of the form

�
�I�=s

aI
��I�

�xI� = � , �1�

y defining them as the first-order system

�
i=1

n

�i
��

�xi
= � , �2�

here �1 , . . . ,�n are matrices. From the physical point of view the �k describe internal degrees of
reedom of the associated system.

In the above-mentioned context, Vázquez et al. recently considered in Refs. 21 and 22 the
ractional diffusion equations with internal degrees of freedom. They can be obtained as the
-roots of the standard scalar linear diffusion equation. Thus, a possible definition of the square
oot of the standard diffusion equation �SDE� in one space dimension, ut−uxx=0, is the following:
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�A
�1/2

�t1/2 + B
�

�x
���x,t� = 0, �3�

here A and B are 2�2 matrices satisfying Pauli’s algebra

A2 = I, B2 = − I, AB + BA = 0, �4�

being the identity operator.
It is worthy of mention that Oldham and Spanier12,13 were the first authors to derive a formu-

ation involving the mathematical operation of semidifferentiation in replacement of Fick’s laws in
work of 1970.

Here ��x , t� is a multicomponent function with at least two scalar space-time components.
lso, each scalar component satisfies the SDE. Such solutions can be interpreted as probability
istributions with internal structure associated to internal degrees of freedom of the system. They
re named diffunors in analogy with the spinors in Quantum Mechanics.

In this paper we deal with a further generalization of Dirac’s method, considering the system
f fractional evolution equations

�A�t
� + B�x���t,x� = 0, ��t,x� = �u1�t,x�

u2�t,x�
� , �5�

ith 0���1, A and B satisfying �4�, as the square root of the time fractional diffusion-wave
quation

�t
2�u�t,x� − �xxu�t,x� = 0. �6�

Equation �6�, associated with anomalous diffusion, has been widely studied in the literature by
any authors, including Schneider and Wyss,18 Metzler et al.,7,9,23 Mainardi et al.,4–6 Sokolov

t al.,20 Saichev et al.16 A more physical discussion of this equation was given by Metzler and
lafter in Ref. 8 and it is worthwhile mentioning that they proved that the resulting probability
ensity is bimodal in character. In this sense, Schneider and Wyss18 showed that, for dimensions
igher than 1, the character of the solution of the fractional wave equation �when 1/2���1� as
proper probability density is lost.

Each component of ��t ,x� satisfies �6� while the index property �t
��t

�u=�t
2�u holds. Thus, in

he interval 1 /2���1, the decomposition �5� of �6�, expressed in terms of fractional evolution
quations of Dirac-type, represents a fractional interpolation between the diffusion ��=1/2� and
ave ��=1� equations.

The applications of the fractional calculus range in a wide spectrum of areas like material
ciences �viscoelasticity, polymers, etc.�, circuits, diffusion processes, Biology, Economy, Geol-
gy, traffic problems, data analysis, and others, as illustrated, for example, in the textbooks by
ilfer,2 Ross,15 and Samko et al.17 Many of the associated models amount to replacing the time
erivative in an evolution equation with a fractional derivative of real order.

The fractional derivative operator �t
� appearing in �5� can be specified according to several

efinitions available in the literature �see, for example, Refs. 17 and 14�; we will refer to the two
ommonly used definitions of Riemann-Liouville and Caputo.

The Riemann-Liouville derivative of order ��0 is defined as

�a
RLDx

�f��x� =
dn

dxn

1

	�n − ��	a

x

�x − t�n−�−1f�t�dt , �7�

ith x�a, n=−�−��, whereas the Caputo fractional derivative, usually considered as a regularized
ersion of the Riemann-Liouville fractional differential operator, takes the form

�x
CDx

�f��x� =
1

	�n − ��	
x fn�
�

�x − 
��−n+1d
 . �8�

a
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There exists the following relation between the above-noted definitions:

�a
CDx

�f��x� = a
RLDx

�
 f�x� − �
j=0

n−1

f �j��a + �
�x − a� j

j! � , �9�

nd, a condition under which both derivatives hold is that f �ACn−1�a ,��. Equivalence �9� allows
ne to use only initial conditions of the classical type when dealing with fractional equations
nvolving Riemann-Liouville or Caputo derivatives. The integral approach pursued by Schneider
nd Wyss in Ref. 18 is probably the most physical way of incorporating these initial values to the
orresponding equation.

Definitions �7� and �8� reproduce the classical derivative dn /dxn when �=n �n�N� and the
dentity operator for �=0, and they are nonlocal operators being given by a definite integral.

It is important to highlight that, in general �see Refs. 10 and 14, for example� the index
roperty aDx

�
aDx

�f = aDx
�+�f does not hold using the definitions of fractional derivative of Riemann-

iouville �7� or Caputo �8�, unless the function f verifies

f �j��a + � = 0, j = 0,1,2, . . . ,m − 1, �10�

henever f�x��ACm−1�a ,�� and fm�x��Lloc
1 �a ,��, m−1���m.

Reference 10, Chap. 4 analyzes a restricted class of functions C for which the Riemann-
iouville fractional derivative satisfies the cited index property. Some examples of functions in C
re: x
 with 
�−1, the polynomials, the exponentials, the sine and cosine functions, and all the
inear combinations of them.

The structure of the paper is as follows. In Sec. II, a physical meaning to the solutions of �5�
s given, showing how they generalize the behavior of the solutions of the Dirac system, recovered
hen �=1, in relation with the D’Alembert solution. Following the analogy with the classical
irac case, the internal symmetries of the system �5� under inversions and translations in time

nd/or space, and Galileo transform are considered in Sec. III, whereas in Sec. IV a conserved
uantity for �5�, analogous to the Hamiltonian for the classical Dirac equation, is found.

I. PHYSICAL MEANING OF THE SOLUTIONS OF THE SYSTEM OF FRACTIONAL
VOLUTION EQUATIONS

It is well known that the general solution of the wave equation with zero initial velocity,

��ttu�t,x� − c2�xxu�t,x� = 0,

u�0,x� = ��x�, � � C2,

ut�0,x� = 0,

 �11�

s given by the D’Alembert Formula

u�t,x� = 1
2 ���x − ct� + ��x + ct�� . �12�

From a physical point of view, we can interpret this fact as that the amplitude at time t of a
erturbation created by a given starting deformation at rest, ��x�, is the superposition of two
aves, ��x+ct� and ��x−ct�, whose shape is identical to the starting one’s and traveling in
pposite directions. The two waves are solutions of the following first-order problems:

��tu�t,x� − c�xu�t,x� = 0,

u�0,x� = ��x�, � � C2, � �13�
nd
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��tu�t,x� + c�xu�t,x� = 0,

u�0,x� = ��x�, � � C2, � �14�

nd the D’Alembert solution is a linear combination of them with coefficients equal to 1/2.
Now, if we only shrink the study to the pure real matrices leading to a system �5� of separated

quations, then we have two possible choices:

A = �0 1

1 0
�, B = � 0 1

− 1 0
� , �15�

nd the second pair of matrices given by the same A and −B.
Substituting �15� in �5�, it reduces to the following system of equations:

��t
�u1�t,x� − �xu1�t,x� = 0,

�t
�u2�t,x� + �xu2�t,x� = 0,

� �16�

here 0���1, and the equations appearing in �13� and �14� are devolved for the limiting case of
=1 and c=1.

We want to show that the solution u�t ,x� of the time fractional diffusion equation �6� is still a
inear combination of the solutions u1�t ,x� and u2�t ,x� of �16�, for each 0���1 and, therefore,
hat the relation existing between the Dirac solutions and the D’Alembert expression is extended
o the fractional case.

In Ref. 3 the following initial value problem

�CDt
�u��t,x� = 
�xu�t,x� �t � 0,x � R; 0 � � � 1� ,

�17�
lim

�x�→�
u�t,x� = 0, u�0 + ,x� = g�x� ,

as been solved and the general solution, expressed in terms of the inverse of its Fourier trans-
orm, is given by

u�t,x� = ug,
�t,x� =
1

2�
	

−�

+�

E�,1�− i
kt��G�k�e−ikxdk , �18�

here E�,��z� is the biparametric Mittag-Leffler special function.1 This solution is said to be
ocalized due to the property lim�x�→�u�t ,x�=0.

On the other hand, the general localized solution of the Cauchy problem for the time fractional
iffusion equation,

�CDt
2�f��t,x� = 
2�xxf�t,x� ,

�19�
lim

�x�→�
f�t,x� = 0, f�0 + ,x� = g�x�, ��t f�t,x��t=0 = 0 �t � 0,x � R� ,

here 0���1, can be found in Ref. 5 and it reads

f�t,x� = fg�t,x� =
1

2�
	

−�

+�

E2�,1�− �
k�2t2��G�k�e−ikxdk . �20�

Now, if we apply the duplication formula1 for the Mittag-Leffler function,

E2�,1�z� = 1
2 �E�,1�+ z1/2� + E�,1�− z1/2�� , �21�
hen we can rewrite �20� as follows:
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fg�t,x� = 1
2 �ug,−
�t,x� + ug,
�t,x�� , �22�

here ug,
 is given in �18�.
So, we can conclude that the general solution of the Cauchy problem �19� for the time

ractional diffusion equation turns out to be a linear combination, with coefficients equals to 1/2,
f the two general solutions of the Cauchy problems for the fractional Dirac-type equations
epresented by �17� and by the problem obtained when 
 is replaced by −
 in �17�.

In particular, the fundamental solution of �19�, when g�x�=��x�, turns out to be

f�t,x� =
1

2
t�W�−
�x�
t�


;− �,1 − �� �0 � � � 1� , �23�

here W�z ;� ,�� is the Wright special function �Ref. 1, �18.1�27��.
Therefore, if we assume 
=1 in �19�, we obtain

f�t,x� =
1

2t�W�−
�x�
t� ;− �,1 − �� =

1

2
�u1�t,x� + u2�t,x�� , �24�

here

u1�t,x� = � 1

t�W� x

t� ;− �,1 − �� , x � 0

0, x � 0

 �25�

nd

u2�t,x� = �0, x � 0

1

t�W�−
x

t� ;− �,1 − �� , x � 0 
 �26�

re the functions appearing in �16�, fundamental solutions of �17� when 
=1 and 
=−1, respec-
ively �see Ref. 3�.

II. INVARIANCE WITH RESPECT TO INVERSIONS AND TRANSLATIONS IN TIME
ND/OR SPACE

The aim of this section is to establish whether the system �5� turns out to be invariant under
nversions and translations in time and/or space, and Galileo transform, and how the nonlocal
roperty of the time fractional differential operator affects these results.

Let us first consider the spatial inversion P :x�=−x of the system �5�, and set

���t,x�� = S��t,x�x��� . �27�

We look for a matrix S so that the transformed multicomponent function ���t ,x�� is still a
olution of the system �5�, this is:

A�t
����t,x�� + B�x����t,x�� = 0, ���t,x�� = S�u1�t,x�x���

u2�t,x�x���
� , �28�

here the fractional derivative �t
� could be specified in this context either through �7� or �8�.

We calculate

�x����t,x�� = S�x���t,x�x��� = − S�x��t,x� �29�

nd this allows us to write:

A�����t,x�� + B� ���t,x�� = AS����t,x� − BS� ��t,x� .
t x� t x
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Therefore, in order for �28� to be verified, it has to turn out

S−1AS�t
���t,x� − S−1BS�x��t,x� = 0,

nd, according to �4�, when S=A, this requirement is fulfilled, being ��t ,x� solution of �5�. Thus,
he system of fractional evolution equations �5� is invariant under spatial inversion, as well as the
ime fractional diffusion equation �6� with respect to this transformation.

Let us now consider the time inversion T : t*=−t and set

�*�t*,x� = T��t�t*�,x� . �30�

Then, as for the spatial inversion, we have to find a matrix T such that �*�t* ,x� is solution of
he system of equations �5�, where now it is necessary to specify the used definition of fractional
erivative �t

�.
If we assume the Caputo fractional derivative �8� in �5�, then we have

Aa
CDt*

��*�t*,x� + B�x�
*�t*,x� = 0, �*�t*,x� = T�u1�t�t*�,x�

u2�t�t*�,x�
� . �31�

It results

a
CDt*

��*�t*,x� = T�− 1��
−a
C Dt

���t,x� . �32�

nd, in particular, when a=0:

0
CDt*

��*�t*,x� = T�− 1��
0
CDt

���t,x� . �33�

Therefore, in general, the left-hand side of the equation in �31� takes the form

�− 1��AT−a
C Dt

���t,x� + BT�x��t,x� ,

nd we only can have invariance of �5�, with respect to time inversion, if a=0 and the matrix T
erifies

��− 1��AT = TA ,

BT = TB .
�

The matrix T=B fulfills the above-noted conditions while �−1��=−1, which means

�− 1�� = ei��+2n��� = − 1 = ei��+2k��,

ith n ,k� �N� �0��, and this implies

� =
1 + 2k

1 + 2n
, k = 0,1,2, . . . , n = k + 1,k + 2,k + 3, . . . ,

s the hypothesis 0���1 has to be preserved.
Some particular values of �, for which the invariance of the system �5� under time inversion

olds, are the following:

� = 1
3 , 1

5 , 1
7 , . . . , 3

5 , 3
7 , 3

9 , . . . , 5
7 , 5

9 , 5
11 ,… .

Note that the time fractional diffusion equation �6� is invariant under time inversion while
−1�2�=1, which holds and it is well defined for

� =
k

1 + 2n
, n = 1,2,3, . . . , k = 1,2, . . . ,2n ,
his is,
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� = 1
3 , 2

3 , 1
5 , 2

5 , 3
5 , 4

5 , 1
7 , 2

7 ,…, 6
7 , 1

9 , . . . ,

n agreement with known results for the classical one-dimensional time diffusion equation ��
1/2�.

The invariance properties under time inversion of systems �5� and �6� are a partial character-
zation of the transition between the parabolic ��=1/2� and hyperbolic ��=1� behaviors.

If we repeat the computations when �t�= a
RLDt*

� in �5�, we obtain the same results so that we
an deal in this context with any of the two definitions of fractional derivative without losing
enerality.

Now, if we consider the space-time inversion PT : t*=−t, x�=−x and we assume

�̄�t*,x�� = R��t�t*�,x�x��� , �34�

ver the system of equations �5�, repeating exactly the same calculations as above the system turns
ut to be invariant under space-time inversion if we still restrict our study to the case of a=0 in the
ower extreme of integration of the fractional derivative and when the matrix R fulfills

��− 1��AR = RA ,

BR + RB = 0.
�

herefore it must be distinguished between two cases:

1� If �−1��=−1 that means

� =
1 + 2k

1 + 2n
, k = 0,1,2, . . . , n = k + 1,k + 2,k + 3, . . . ,

then for R=AB=−BA the system �5� is invariant under space-time inversion.
2� If �−1��=1, that means

� =
2k

1 + 2n
, k = 1,2,3, . . . , n = k,k + 1,k + 2, . . . ,

then the space-time invariance only holds when R=A.

The invariance property of system �5� fails, in general, with respect to space-time translation
nd Galileo transform. In fact, if we operate with a space-time translation on the system �5�,
ssuming the changes of variable t*= t+ t0, x�=x+x0, where t0 and x0 are constants, and setting

�̃�t*,x�� = V��t�t*�,x�x��� , �35�

he system turns out to be invariant under this space-time transformation just for the trivial case of

0=0 and V= I. Actually, for the Caputo derivative, for example, it results

a
CDt*

��̃�t*,x�� = Va−t0
C Dt

���t,x� .

In the case of the Galileo transform: x�=x+vt, t�= t, with v�0 constant, we set

�̂�t,x�� = W��t,x�x�,t�� �36�

n �5�. In general, we do not have invariance of system �5� with respect to Galileo transform, as
ell as it occurs with the classical Dirac equation. Indeed, it is

a
CDt

��̂�t,x�� = Wa
CDt

���t,x� − vWaIt
1−��x�t,x� ,

�
here It is the Riemann-Liouville fractional integral defined as
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�aIx
�f��x� =

1

	���	a

x

�x − t��−1f�t�dt ,

ith x�a, ��0, f �Lloc
1 �a ,�� and �aIt

0f��x�= f�x�.
Then, the transformed multicomponent function �̂�t ,x�� is still a solution of �5� if the system

Aa
CDt

��̂�t,x�� + B�x��̂�t,x�� = AWa
CDt

���t,x� − vAWaIt
1−��x�t,x� + BW�x��t,x� �37�

s equal to the zero vector, which implies

AWaIt
1−��x�t,x� = 0. �38�

Therefore, in general, we do not have invariance of the system �5� with respect to Galileo
ransform because, in view of the evaluation of the beta integral,1 valid for all p�0 and q�0 �or
e�p��0 and Re�q��0�, namely

B�p,q� ª 	
0

1

up−1�1 − u�q−1du =
	�p�	�q�
	�p + q�

,

he following property for the Riemann-Liouville fractional integral can be proved

aIt
��t − a�� =

	�� + 1�
	�� + � + 1�

�t − a��+� �39�

hen ��−1. As a consequence, it results aIt
1−��x�t ,x�=0 just in case �x�t ,x�=0 for any 0��

1, which means ��t ,x�=��t�, constant function in x. If this condition is not fulfilled, as occurs
n general, then, being A= � 01

10
� in our case, we can obtain a restricted class of functions u1 and u2

or which �5� is invariant under Galileo transform.
Given W= � w11w12

w21w22
�, the system �38� can be reduced to

�w21aIt
�−1 �

�x
u1�t,x� + w22aIt

�−1 �

�x
u2�t,x� = 0,

w11aIt
�−1 �

�x
u1�t,x� + w12aIt

�−1 �

�x
u2�t,x� = 0 


nd, if det�W�=0, which means w12w21−w11w22=0, then it has the solution �� /�x�u1�t ,x�=
�w22/w21��� /�x�u2�t ,x� which implies u1�t ,x�=−�w22/w21�u2�t ,x�+c�t�, where c�t� is a constant

unction in x.
The general noninvariance of the fractional evolution equations under time translation and

alileo transform is due to the nonlocal property of the time fractional derivative and it is in
ontrast with the invariance results holding for the Dirac equation, with respect to the time
ranslation, as a fundamental requirement to be the relativity principle verified.19

V. A CONSERVED QUANTITY: THE FRACTIONAL HAMILTONIAN

The invalidity of the invariance of the fractional Dirac-type system �5� under time translation
oes not prevent it from possessing a fractional conserved quantity, analogous to the Hamiltonian
or the classical Dirac system.

It is well known �see, for example, Ref. 19� that the Lagrangian density for the classical Dirac
quation obtained from �5� when �=1 is given by

L�t,x� = �̄A�t� + �̄B�x� ,

ith �=��t ,x�= �u1�t ,x� ,u2�t ,x��T, �̄= �̄�t ,x�=�+A, and �+=�+�t ,x�= �u1
*�t ,x� ,u2

*�t ,x��, complex

onjugate of � that verifies the conjugated equation of �5� with �=1:



w

a

p
�
→
w

c
0

d

a

B
p
s

a

a

w

113512-9 Fractional evolution equations Dirac like J. Math. Phys. 46, 113512 �2005�
�t�
+A+ + �x�

+B+ = 0.

Therefore, the Hamiltonian density will be

H�t,x� =
�L�t,x�
���t��

�t� − L�t,x� = �̄A�t� − L�t,x� = − �+C�x� , �40�

ith C=AB=−BA, the Hamiltonian

H�t,x� = 	
−�

+�

H�t,x�dx = − 	
−�

+�

�+C�x�dx , �41�

nd, its time derivative,

d

dt
H�t,x� = 	

−�

+�

�x��+�x��dx , �42�

rovided that we restrict ourselves to the pure real matrices A and B so that the equivalence

t�
+=−�x�

+C is verified. In this case, if we assume, for example, the initial condition �+�x�
0 when �x�→�, we can conclude that there exists a conserved quantity associated with Eq. �5�

ith �=1, given by the Hamiltonian �41�.
In what follows, we want to show that, as well as we did earlier, it is possible to find a

onserved quantity associated with the system of fractional Dirac-type equations �5� for general
���1, even if it does not present invariance with respect to time translation.

We start defining, by analogy with the classical Dirac case, a formal “fractional Lagrangian
ensity” related to �5�,

L��t,x� = �̄A�t
�� + �̄B�x� , �43�

nd a formal “fractional Hamiltonian density,”

H��t,x� =
�L��t,x�

���t
���

�t
�� − L��t,x� = �̄A�t

�� − L��t,x� = − �+C�x� . �44�

The final expression in �44� is equivalent to �40� and can be simplified observing that, A and
being pure real matrices, if � is a solution of �5�, then also �+ has to solve it, the reason why a

ure real solution of �5� can always be found. Therefore, we will assume that � is a pure real
olution of �5� and this allows us to write the “fractional Hamiltonian” as

H��t,x� = 	
−�

+�

H��t,x�dx = − 	
−�

+�

�TC�x� dx �45�

nd, consequently,

d

dt
H��t,x� = − 	

−�

+�

��t�
TC�x� + �TC�x�t��dx = − 	

−�

+�

�x��TC�t��dx . �46�

The equivalence �t�
TC�x�=�x�

TC�t�, due to the fact that the matrix C=AB, with pure real A
nd B, can only be of two types:

C1 = �c11 0

0 − c11
�, C2 = � 0 c12

c12 0
� ,

here c11 and c12 take the values ±1.

At this point it is necessary to specify the definition of the fractional derivative in use.
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When 0���1 the Riemann-Liouville fractional derivative �t
�= RLDt

�, according to �9�, ful-
lls the following identity:

�RLDt
����t,x� = �It

1−��t���t,x� +
t−�

	�1 − ��
��0,x� , �47�

eing �RLDt
���0,x���t ,x�= t−� / �	�1−�����0,x� and �CDt

����t ,x�= �It
1−��t���t ,x� by definition �8�.

Now, if we introduce the Riemann-Liouville fractional derivative in �5�, using the fact that this
erivative is the left inverse operator of the Riemann-Liouville fractional integral, we can write

��t���t,x� = − C�x�
RLDt

1−����t,x� − A�RLDt
1−� t−�

	�1 − ��
��0,x���t,x� = − C�x�

RLDt
1−����t,x�

− A�t��0,x� = − C�x�
RLDt

1−����t,x� . �48�

In a similar straightforward way it can be proved that result �48� holds exactly the same when
he Caputo derivative appears in �5�.

Therefore, when �=1/2 both derivatives verify

��t���t,x� = C2��x
2���t,x� = ��x

2���t,x� . �49�

In agreement with �48�, the expression for the Hamiltonian time derivative �46� takes the
orm:

d

dt
H��t,x� = − 	

−�

+�

�x��TC�t��dx = 	
−�

+�

�x��T�x
RLDt

1−��� , �50�

hen 0���1 and, in particular,

d

dt
H1/2�t,x� = 	

−�

+�

− �x��TC�x
2��dx , �51�

or �=1/2, when the fractional derivative is either of the Riemann-Liouville or of the Caputo
ype.

Therefore, we can conclude that, when 0���1, if the condition

d

dt
H��t,x� = 	

−�

+�

�x��T�x
RLDt

1−���dx = ��u1�x
RLDt

1−�u1 + u2�x
RLDt

1−�u2��x=−�
x=+� = 0, �52�

s fulfilled, then a conserved quantity exists associated with Eq. �5� and it is given by the fractional
amiltonian �45�.

For the particular case of �=1/2, we deduce from �51� an alternative condition, equivalent to
52�, to provide the existence of the conserved quantity H1/2�t ,x�:

d

dt
H1/2 = 	

−�

+�

− �x��TC�x
2��dx = − �TC�x

2���x=−�
x=+� = 0,

hich means

��u1�x
2u1 − u2�x

2u2��x=−�
x=+� = 0, �53�

hen C=C1, and

��u1�x
2u2 + u2�x

2u1��x=−�
x=+� = 0, �54�

hen C=C2. Both conditions �53� and �54� come true when, for example, �uh�→0 and �x
2uh is
ounded when �x�→�, for h=1,2.
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We can conclude this section recalling some results obtained in Ref. 3
If we consider the system of fractional equations of Dirac-type �5� when �t

�= CDt
�, when A

nd B are given by �15� so that it turns out to be

C = C1 = �− 1 0

0 1
� ,

nd we complete �5� with the initial conditions

lim
�x�→�

��t,x� = 0, ��0 + ,x� = ��x� ,

hen the localized fundamental solutions are given by �25� and �26�.
In Ref. 6 the asymptotic behavior of the Wright function W�z ;� ,��, for the case of �=−� and

=1−�, has been studied. In particular, if the function M�z ;��=W�−z ;−� ,1−�� is introduced,
hen the argument z=r�0 is real and positive and r→ +�, it holds

M� r

�
;�� � a���r��−1/2�/�1−�� exp�− b���r1/�1−��� , �55�

here a���=1/�2��1−��, b���= �1−�� /�.
This implies an asymptotic exponential decay of our solutions u1 and u2, and, consequently,

hat �uh�→0 when �x�→� for h=1,2.
In order to ensure the existence of the conserved quantity �45� when 0���1, we also have

o analyze the asymptotic behavior of �x
RLDt

1−xuh for h=1,2.
It turns out to be

RLDt
1−�� 1

t�W�−
�x�
t� ;− �,1 − ��� = �tIt

�
�
k=0

+�
− ��x��kt−�k−�

k!	�− �k + 1 − ��� = �t
�
k=0

+�
− ��x��kt−�k

k!	�1 − �k��
= 
�

k=0

+�
− ��x��kt−�k−1

k!	�− �k� � =
1

t
W�−

�x�
t� ;− �,0�

=
��x�
t�+1 W�−

�x�
t� ;− �,1 − ��

f we use the property W�−z ;−� ,1−��= �1/�z�W�−z ;−� ,0�; therefore, �55� implies that RLDt
1−�uh,

s well as �x
RLDt

1−�uh, will also decay exponentially when �x�→� for h=1,2.

. CONCLUSIONS

We have treated a generalization of the classical free Dirac equations, namely the fractional
volution equations of Dirac-type. For the localized solutions of these equations we have derived
heir relation with the corresponding solution of the fractional diffusion equation, showing how
he latter turns out to be a linear combination of the formers, similarly to the D’Alembert solution
f the classical wave equation is a linear combination of the solutions of the first-order equations
erived from the decomposition of the second-order wave operator into its corresponding square-
oot operators.

Following the analogy existing between the fractional evolution equations and the classical
irac equation, we have studied their internal symmetries with respect to certain transformations

n space and/or time. The system of fractional Dirac-type equations is invariant under spatial
nversion for each 0���1, whereas it possesses invariance under time inversion only for certain
alues of the fractional index �, so enclosing the hyperbolic behavior of the classical Dirac
quation or of the time fractional diffusion equation �6� when 1

2 ���1 �including the classical
ave equation corresponding to �=1�, and the parabolic one of the time fractional diffusion

1
quation �6� when 0��� 2 �including the classical diffusion equation corresponding to �=1/2�.
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n keeping with the joint space-time inversion, a range of validity for the invariance is located, still
epending on the index �, but wilder than the one corresponding to time inversion only.

The system proves to be never invariant under time translation and Galileo transform due to
he nonlocal property of the time fractional derivative. This lack of invariance of the fractional
volution equations under time translation is in contrast to the invariance results holding for the
lassical Dirac equation, with respect to the same transformation, as a fundamental requirement to
e the relativity principle verified, but does not prevent the fractional Dirac-type system from
ossessing a fractional conserved quantity, analogous to the Hamiltonian for the classical Dirac
ystem.
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