

Tema 1:

Representación digital de la información

Fundamentos de computadores I

José Manuel Mendías Cuadros

Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid

Contenidos

- ✓ Introducción de conceptos.
- ✓ Sistemas de numeración: binario, octal y hexadecimal.
- Aritmética binaria.
- ✓ Conversión entre bases.
- ✓ Representación de números enteros: MyS, C1 y C2.
- ✓ Aritmética entera: MyS y C2.
- Otras codificaciones.

Transparencias basadas en los libros:

- R. Hermida, F. Sánchez y E. del Corral. Fundamentos de computadores.
- D. Gajsky. Principios de diseño digital.

Concepto de sistema

- Sistema: caja "negra" que a lo largo del tiempo:
 - Recibe información por sus entradas, x(t).
 - Procesa dicha información según una cierta función, F.
 - Genera información por sus salidas, z(t).

$$z(t) = F(x(t))$$

$$x(t_i)$$

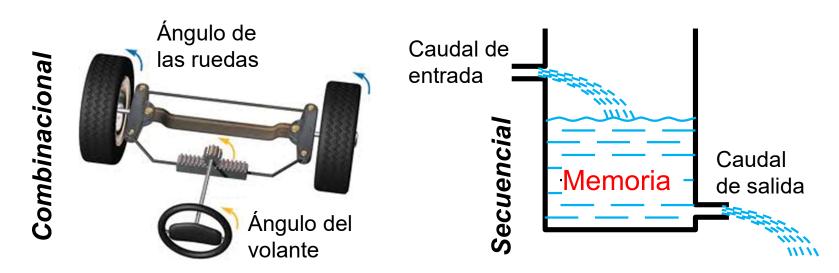
$$x(t_i)$$

Analógicos vs. digitales

- Sistema analógico
 - Los valores que pueden tomar las entradas/salidas pertenecen a un espectro continuo de valores.
- Sistema digital
 - Los valores que pueden tomar las entradas/salidas están restringidos a un conjunto discreto de valores.

Los sistemas analógicos establecen semejanzas, los digitales numerizan

Combinacionales vs. secuenciales


Sistema combinacional

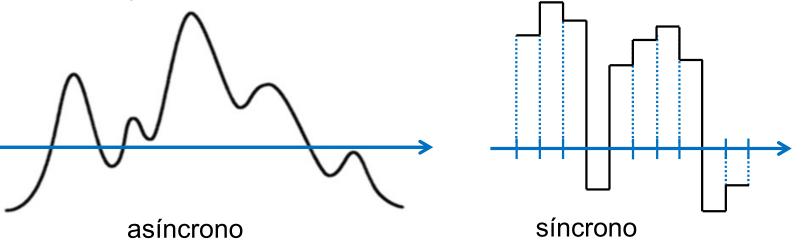
$$z(t_i) = F(x(t_i))$$

- La salida en cada instante depende exclusivamente del valor de la entrada en ese instante.
- Sistema secuencial

$$z(t_i) = F(x(t)), con t \in [0, t_i]$$

 La salida en cada instante depende del valor de la entrada en ese instante y de todos los valores que la entrada ha tomado con anterioridad.

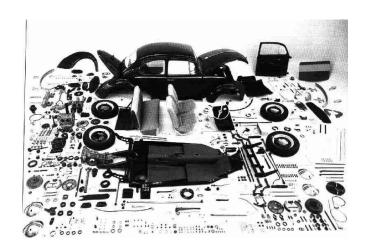
Asíncronos vs. síncronos



Asíncronos

 Las entradas/salidas pueden cambiar en cualquier momento.

Síncronos


 Las entradas/salidas solo pueden cambiar en un conjunto discreto de instantes definidos por una señal de reloj.

Especificación vs. implementación

- Especificación (¿qué hace?)
 - Descripción del comportamiento de un sistema sin precisar cómo está constituido.
- Implementación (¿cómo está hecho?)
 - Descripción de un sistema en base a un conjunto de elementos más simples interconectados.

Coche (RAE): Automóvil destinado al transporte de personas y con capacidad no superior a siete plazas.

Síntesis vs. análisis

- Síntesis (o diseño)
 - Proceso de obtener una implementación que tenga el comportamiento definido por una especificación dada.
- Análisis
 - Proceso de obtener el comportamiento de una implementación dada.

Para una especificación dada existen multitud de implementaciones válidas.

Temario

- 1. Representación digital de la información.
- 2. Especificación de sistemas combinacionales.
- 3. Implementación de sistemas combinacionales.
- 4. Módulos combinacionales básicos.
- 5. Especificación de sistemas secuenciales síncronos.
- 6. Implementación de sistemas secuenciales síncronos.
- 7. Módulos secuenciales básicos.
- 8. Rutas de datos y controladores.

Sistemas de numeración

- Mecanismo que permite dar una representación gráfica a cada número.
- Se define por:
 - Un conjunto discreto de símbolos (dígitos) cada uno de los cuales representa directamente un número.
 - la cardinalidad de este conjunto se llama BASE.
 - Un conjunto discreto de reglas de generación (notación) que permiten representar números mayores usando más de un dígito.
 - Un conjunto de reglas de manipulación de símbolos (aritmética) que permite realizar coherentemente operaciones con números.

Notación posicional

 Cada cantidad se representa utilizando una cadena de dígitos distinta

$$(a_{n-1}, a_{n-2}.... a_1, a_0)_r$$

- a_{n-1} es el dígito más significativo
- a₀ es el dígito menos significativo
- r es la base del sistema de numeración
- El valor de cada dígito es función de la posición que ocupa en la cadena (peso). El peso de la posición i en un sistema de base r es ri

$$(valor\ digito)_i = (valor\ digito) \times r^i$$

El valor de una cadena es la suma del valor de cada uno de los dígitos que la forman.

11

Representación digital de la información

Notación polinomial

Cada cantidad se representa por un polinomio cuya resolución permite conocer el valor representado

$$\sum_{i=0}^{n-1} a_i \times r^i$$

Notación posicional	Notación polinomial	Cantidad representada
(17) ₁₀	$1\times10^{1} + 7\times10^{0}$	17
(10001) ₂	$1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$	17
(21) ₈	$2 \times 8^1 + 1 \times 8^0$	17
(11) ₁₆	$1 \times 16^1 + 1 \times 16^0$	17

Sistemas base 10, 2, 8 y 16

Decimal	Binario	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
	computadores	binario compacto	

ع ع FC-1

Aritmética binaria

Aritmética de símbolos

Las tablas de sumar, restar, multiplicar... dígitos.

Suma	
0 + 0 = 0	
0 + 1 = 1	
1 + 0 = 1	
1 + 1 = 0	y me llevo 1

Resta	
0 - 0 = 0	
0 - 1 = 1	y me llevo 1
1 - 0 = 1	
1 - 1 = 0	

Multiplicación
$0 \times 0 = 0$
$0 \times 1 = 0$
$1 \times 0 = 0$
$1 \times 1 = 1$

Aritmética de notación

 El mecanismo para sumar, restar, multiplicar... cadenas de dígitos.

tema 1:

FC-1

15

Suma binaria

$$S = 9 + 11$$

9 + 1 1 1 0 0 1 1 0 1 1

tema 1:

FC-1

16

Suma binaria

$$S = 9 + 11$$

17

Suma binaria

$$S = 9 + 11$$

tema 1:

FC-1

Suma binaria

$$S = 9 + 11$$

		1	
1	0	0	1
1	0	1	1
			0

Suma binaria

$$S = 9 + 11$$

Suma binaria

$$S = 9 + 11$$

Suma binaria

$$S = 9 + 11$$

remd 1:

FC-1

Suma binaria

$$S = 9 + 11$$

Resta binaria

$$R = 83 - 25$$

83

-25

1 0 1 0 0 1 1

- 1 1 0 0 1

tema

Resta binaria

$$R = 83 - 25$$

83

-25

1

8

1 0 1 0 0 1 1

- 11001

tema 1:

Resta binaria

$$R = 83 - 25$$

83

-25

1

58

1 0 1 0 0 1 1

Resta binaria

$$R = 83 - 25$$

83

-25

1

58

1 0 1 0 0 1 1

C

Resta binaria

$$R = 83 - 25$$

83

-25

1

58

1 0 1 0 0 1 1

- 1 1 0 0 1

1 0

Resta binaria

$$R = 83 - 25$$

83

-25

1

58

1 0 1 0 0 1 1

- 11001

0 1 0

minuendo
sustraendo
acarreos
diferencia

tema 1.

್ಲಿ FC-1

Resta binaria

$$R = 83 - 25$$

1 0 1 0 0 1 1 - 1 1 0 0 1 1 1 0 1 0

tema 1:

Resta binaria

$$R = 83 - 25$$

 1 0 1 0 0 1 1

 - 1 1 0 0 1

 1 1

 1 1 0 1 0

Resta binaria

$$R = 83 - 25$$

83 -25 58

tema 1:

Resta binaria

$$R = 83 - 25$$

 1 0 1 0 0 1 1

 1 1 0 0 1

 1 1 1
 0 1 0

 0 1 1 1 0 1 0

$$P = 11 \times 5$$

multiplicando multiplicador

productos parciales

resultado

$$P = 11 \times 5$$

multiplicando multiplicador

productos parciales

resultado

$$P = 11 \times 5$$

1 1 × 5 5 5

1 0 1 1 × 1 0 1

multiplicando multiplicador

productos parciales

resultado

$$P = 11 \times 5$$

multiplicando multiplicador

productos parciales

resultado

Multiplicación binaria

$$P = 11 \times 5$$

multiplicando multiplicador

productos parciales

resultado

Multiplicación binaria

$$P = 11 \times 5$$

multiplicando multiplicador

productos parciales

resultado

FC-1

rema 1.

FC-1

Multiplicación binaria

$$P = 11 \times 5$$

1 1 × 5 5 5

× 1 0 1 1 × 1 0 1 1 0 1 0 0 0

0 0 0 0 1 0 1 1 1 1 0 1 1 1 multiplicando multiplicador

productos parciales

resultado

División binaria

$$C = 117 / 9$$

dividendo

1 1 1 0 1 0 1

divisor

1 0 0 1

cociente

División binaria

$$C = 117 / 9$$

dividendo

1 1 1 0 1 0 1

divisor

1 0 0 1

cociente

42

División binaria

$$C = 117 / 9$$

dividendo

divisor

cociente

43

División binaria

$$C = 117 / 9$$

dividendo

tema 1:

FC-1

División binaria

$$C = 117 / 9$$

dividendo

División binaria

$$C = 117 / 9$$

dividendo

46

División binaria

$$C = 117 / 9$$

dividendo

División binaria

$$C = 117 / 9$$

dividendo

rema 1.

FC-1

División binaria

$$C = 117 / 9$$

dividendo

Representación digital de la información

Conversión entre bases

Sustitución en serie

base $R \rightarrow base S$, usando la aritmética de base S

otra
$$\rightarrow$$
 base 10

 Se evalúa la representación polinomial del número usando la aritmética de base S.

$$(2A)_{16} = 2 \times 16^1 + 10 \times 16^0 = 32 + 10 = (42)_{10}$$

$$(1010)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

= 8 + 0 + 2 + 0 = $(10)_{10}$

Conversión entre bases

División por la base

base R → base S, usando la aritmética en <u>base R</u>

base $10 \rightarrow \text{otra}$

 Se divide sucesivamente el número por S reservando los restos hasta que el cociente sea menor que S.

$$(12)_{10} = (1100)_2$$

$$\begin{array}{c|cccc}
1 & 2 & & \\
-1 & 2 & 6 & 2 \\
\hline
0 & -6 & 3 & 2 \\
\hline
0 & -2 & 1 \\
\hline
1 & & peso \\
\end{array}$$

Representación digital de la información

Conversión entre bases

Conversión entre potencias de la misma base

base
$$R \rightarrow base S=R^i$$

base
$$2 \rightarrow$$
 base $8=2^3$ o base $16=2^4$

- Los dígitos de base R se agrupan de derecha a izquierda en de bloques de i elementos.
- Cada bloque se remplaza por el correspondiente dígito de base S.

$$(10011110110)_2 = (2366)_8$$

$$(100111101)_2 = (13D)_{16}$$

Conversión entre bases

Conversión entre potencias de la misma base

base
$$R=S^i \rightarrow base S$$

base
$$8=2^3$$
 o base $16=2^4 \rightarrow$ base 2

 Cada dígito de base R se remplaza por el correspondiente bloque de dígitos en base S.

$$(713)_8 = (111001011)_2$$

$$(A5C)_{16} = (101001011100)_2$$

Representación de la información

- Un sistema digital solo procesa información digital codificada en binario.
 - Una codificación es un convenio que asocia a cada elemento de información una representación binaria diferente.
 - Un mismo dato puede tener distintas representaciones en distintos códigos.
- Cada código usa un número de dígitos binarios fijo (bits de anchura) que limita el número de datos representable.
 - Con n bits como máximo se representan 2ⁿ datos diferentes.
- El problema del desbordamiento:
 - En las codificaciones numéricas, se produce cuando el resultado de una operación aritmética no es representable (no hay un código que represente al resultado).
 - Deben detectarse porque el resultado es incorrecto.

53

54

Binario puro

- Codifica números naturales
- Notación n bits:
 - o n bits codifican la magnitud en binario.
- Rango representable: [0, 2ⁿ-1]
- Aritmética:

- $6_{10} = (00110)_{2-5 \text{bits}}$
- Extensión (pasar n a m bits, con m>n)
 - Completar con ceros por la izquierda.
- Suma
 - Suma binaria
 - Hay desbordamiento si al sumar el bit más significativo se produce un acarreo.

$$\frac{+ \ 0 \ 1 \ 1 \ 1}{1 \ 0 \ 0 \ 1 \ 0} \ (7)$$

Magnitud y signo (MyS)

- Codifica números enteros
- Notación n bits:
 - 1 bit codifica el signo (el bit más significativo, bit de signo)
 - n-1 codifican la magnitud en binario.
 - Positivos: $+ N = 0 (N)_2$
 - Negativos: $-N = 1 (N)_2$
- Rango representable: [-(2ⁿ⁻¹-1), +(2ⁿ⁻¹-1)]
 - o el cero tiene doble representación (000..00) y (100..00)

Magnitud y signo (MyS)

Procedimiento de codificación (n bits)

- Codificar el signo '+' = '0' , ' ' = '1'
- Codificar la magnitud en binario de n-1 bits usando división por la base.

$$-26_{10} \rightarrow \text{MyS de 8 bits} \quad \begin{cases} \text{signo} \equiv (1) \\ \text{magnitud} \equiv (0011010) \end{cases} \quad -26_{10} = (10011010)_{\text{MyS}}$$

+115₁₀ $\rightarrow \text{MyS de 8 bits} \quad \begin{cases} \text{signo} \equiv (0) \\ \text{magnitud} \equiv (1110011) \end{cases} \quad +115_{10} = (01110011)_{\text{MyS}}$

Procedimiento de decodificación:

- O Decodificar el signo '0' ≡ '+', '1' ≡ '-'
- Decodificar la magnitud usando sustitución en serie.

$$(10010010)_{MyS} \rightarrow decimal$$
 $\begin{cases} signo \equiv '-' \\ magnitud \equiv 18_{10} \end{cases}$ $(10010010)_{MyS} = -18_{10} \end{cases}$ $(01011010)_{MyS} \rightarrow decimal$ $\begin{cases} signo \equiv '+' \\ magnitud \equiv 90_{10} \end{cases}$ $(01011010)_{MyS} = +90_{10} \end{cases}$

Aritmética en MyS

- T E
- Cambio de signo (cambiar un número por su opuesto)
 - Cambiar el bit de signo

$$-(00110)_{\text{MyS-5bits}} = (10110)_{\text{MyS-5bits}}$$

- Extensión (pasar n a m bits, con m>n)
 - Manteniendo el signo, completar la magnitud con ceros por la izquierda.

$$(-6_{10}) = (10110)_{MyS-5bits} = (10000110)_{MyS-8bits}$$

- Suma / Resta
 - Signo y magnitud de manipulan por separado.
 - El signo del resultado depende de las magnitudes y signos de los operandos.
 - Las magnitudes se suman o restan en función de la magnitud y signo de los operandos.

57

58

Aritmética en MyS: suma

- Signo (A) = signo (B)
 - Signo (R) = signo (A) = signo (B)
 - Magnitud (R) = magnitud (A) + magnitud (B)

- Signo (A) = positivo, signo (B) = negativo, |A| ≥ |B|
 - Signo (R) = signo (A) = positivo
 - Magnitud (R) = magnitud (A) magnitud (B)

+ : 4	4	0:1 0 0	1 0 0
+ - : 2	- 2	+ 1:0 1 0	- 010
+	2	0	0 1 0

Aritmética en MyS: suma

- Signo (A) = positivo, signo (B) = negativo, |A| < |B|</p>
 - Signo (R) = signo (B) = negativo
 - Magnitud (R) = magnitud (B) magnitud (A)

- Resto de casos / Resta
 - Equivalente a alguno de los anteriores si se aplica conmutatividad.
- Desbordamiento
 - Hay desbordamiento si al operar con el bit más significativo de la magnitud se produce un acarreo.

Complemento a dos (C2)

- Codifica números enteros
- Notación n bits:

$$\circ$$
 Positivos: + N = 0 (N)₂

• Negativos:
$$-N = (2^n - N)_2 = C2((N)_2)$$

- el bit más significativo se denomina bit de signo
- Rango representable: [-(2ⁿ⁻¹), +(2ⁿ⁻¹-1)]
 - o el cero tiene una única representación (000..00)
 - o el rango es asimétrico, hay un negativo de más (100..00)

$$6_{10} = (0110)_2 \Rightarrow (+ 6_{10}) = (00110)_{C2-5bits}$$

$$(2^5 - 6)_{10} = (26)_{10} = (11010)_2 \Rightarrow (-6_{10}) = (11010)_{C2-5bits}$$

Complemento a dos (C2)

- Procedimiento de codificación (n bits)
 - Si el número es positivo, codificar en binario de n bits usando el método de división por la base.

$$+93_{10} \rightarrow C2 \text{ de 8 bits } \left\{93_{10} = (01011101)_2\right\} +93_{10} = (01011101)_{C2}$$

 Si el número es negativo, codificar el número prescindiendo del signo en binario de n bits usando el método de división por la base y realizar el complemento a dos del resultado.

$$-78_{10} \rightarrow C2 \text{ de 8 bits} \quad \left\{ \begin{array}{l} 78_{10} = (01001110)_2 \\ C2(01001110) = (10110010) \end{array} \right\} -78_{10} = (10110010)_{C2}$$

Complemento a dos (C2)

Procedimiento de decodificación:

 Si el bit de signo es positivo (vale '0'), decodificarlo usando el método de sustitución en serie.

$$(01110001)_{C2} \rightarrow decimal \left\{ (01110001)_2 = (113)_{10} \right\} (01110001)_{C2} = +113_{10}$$

O Si el bit de signo es negativo (vale '1'), realizar su complemento a dos y decodificar el resultado usando el método de sustitución en serie.

$$(10110100)_{C2} \rightarrow \text{decimal} \ \left\{ \begin{array}{l} \text{C2}(10110100) = (01001100) \\ (01001100)_2 = (76)_{10} \end{array} \right\} (10110100)_{C2} = -76_{10}$$

Aritmética en C2

- Cambio de signo (cambiar un número por su opuesto)
 - Complementar a dos el número

$$-(00110)_{C2-5bits} = C2(00110) = (11010)_{C2-5bits}$$

- Para realizar la operación C2 hay varias opciones:
 - Restar el número a 2ⁿ
 - Invertir todos los bits y sumar 1
 - Copiar los bits de derecha a izquierda hasta encontrar el primer 1, invertir el resto.
- Extensión (pasar n a m bits, con m>n)
 - Replicar el bit de signo hacia la izquierda

$$(-6_{10}) = (11010)_{C2-5bits} = (111111010)_{C2-8bits}$$

Aritmética en C2: suma

Signo (A) = signo (B)

$$\circ$$
 R = A + B

Signo (A) = positivo, signo (B) = negativo, |A| ≥ |B|

$$\circ$$
 R = A + B

Aritmética en C2: suma

Signo (A) = positivo, signo (B) = negativo, |A| < |B|</p>

$$\circ$$
 R = A + B

- Resto de casos / Resta
 - Equivalente a alguno de los anteriores si se aplica conmutatividad.
- Resumen suma/resta
 - Para sumar/restar números en C2 basta con hacerlo en binario, ignorando el acarreo del bit más significativo.
 - No obstante, es común realizar la resta como la suma del opuesto

•
$$A - B = A + (-B) =_{C2} A + C2(B)$$

Aritmética en C2: suma

Desbordamiento

- En la suma, solo puede producirse si ambos operandos son del mismo signo. En la resta, solo si son de distinto signo.
- Se detecta chequeando si el signo del resultado es coherente con el signo de los operandos.
- NO se tiene en cuenta el acarreo del bit más significativo.

el rango representable con 4 bits es: [-8, +7]

Complemento a uno (C1)

- Codifica números enteros
- Notación n bits:

$$\circ$$
 Positivos: + N = 0 (N)₂

• Negativos:
$$-N = (2^n - 1 - N)_2 = C1((N)_2)$$

- el bit más significativo se denomina bit de signo
- Rango representable: [-(2ⁿ⁻¹-1), +(2ⁿ⁻¹-1)]
 - o el cero tiene doble representación (000..00) y (111..11)

$$6_{10} = (0110)_2 \Rightarrow (+ 6_{10}) = (00110)_{C1-5bits}$$

$$(2^5 - 1 - 6)_{10} = (25)_{10} = (11001)_2 \Rightarrow (-6_{10}) = (11001)_{C1-5bits}$$

Complemento a uno (C1)

- Procedimiento de codificación (n bits)
 - Si el número es positivo, codificar en binario de n bits usando el método de división por la base.

$$+40_{10} \rightarrow C1 \text{ de 8 bits } \left[40_{10} = (00101000)_2\right] +40_{10} = (00101000)_{C1}$$

 Si el número es negativo, codificar el número prescindiendo del signo en binario de n bits usando el método de división por la base y realizar el complemento a uno del resultado.

$$-62_{10} \rightarrow C1 \text{ de 8 bits} \quad \begin{cases} 62_{10} = (00111110)_2 \\ C1(00111110) = (11000001) \end{cases} \quad -62_{10} = (11000001)_{C1}$$

Complemento a uno (C1)

Procedimiento de decodificación:

 Si el bit de signo es positivo (vale '0'), decodificarlo usando el método de sustitución en serie.

$$(00100010)_{C1} \rightarrow decimal \left[(00100010)_2 = (34)_{10} \right] (00100010)_{C1} = +34_{10}$$

 Si el bit de signo es negativo (vale '1'), realizar su complemento a uno y decodificar el resultado usando el método de sustitución en serie.

$$(11001001)_{\text{C1}} \rightarrow \text{decimal} \ \left\{ \begin{array}{l} \text{C1}(11001001) = (00110110) \\ (00110110)_2 = (54)_{10} \end{array} \right\} \ (11001001)_{\text{C1}} = -54_{10}$$

Aritmética en C1

- T L
- Cambio de signo (cambiar un número por su opuesto)
 - Complementar a uno el número

$$-(00110)_{C1-5bits} = C1(00110) = (11001)_{C1-5bits}$$

- Para realizar la operación C1 hay varias opciones:
 - Restar el número a 2ⁿ 1
 - Invertir todos los bits
- Extensión (pasar n a m bits, con m>n)
 - Replicar el bit de signo hay la izquierda

$$(-6_{10}) = (11001)_{C1-5bits} = (111111001)_{C1-8bits}$$

Comparación códigos (4 bits)

Decimal	MyS	C2	C1
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	1000		1111
-1	1001	1111	1110
-2	1010	1110	1101
-3	1011	1101	1100
-4	1100	1100	1011
-5	1101	1011	1010
-6	1110	1010	1001
-7	1111	1001	1000
-8		1000	

Representaciones decimales

- BCD (Binary Coded Decimal)
 - Cada dígito decimal se representa por un bloque de 4 bits (nibble) que lo codifica en binario.

$$(375)_{10} = (001101110101)_{BCD}$$

- Exceso-3
 - Cada dígito decimal se representa por un bloque de 4 bits que codifica en binario el valor del dígito + 3.

$$(375)_{10} = (011010101000)_{EX-3}$$

Simplifican la conversión decimal-binario y evitan pérdidas de precisión en la conversión de números con parte fraccionaria

Representaciones de alfabetos

- ASCII (American Standard Code for Information Interchange)
 - Codifica el alfabeto latino occidental con 7 bits.
 - Los códigos 00h-1Fh (0-31) y el 7Fh (127) son de control.
 - Los códigos 20h-7Eh (32-126) son imprimibles.
 - Hay diferentes extensiones de 8 bits (1 byte) para soportar más caracteres imprimibles.
- EBCDIC (Extended Binary Coded Decimal Interchange Code)
 - Codifica el alfabeto latino occidental con 8 bits

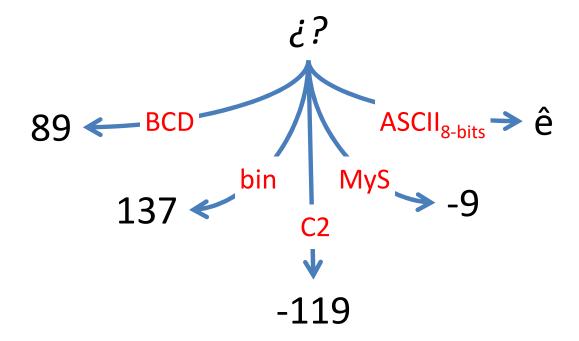
Código ASCII (7 bits)

ASCII He	ASCII Hex Simbolo ASCII Hex Simbolo		ASCII Hex Simbolo			ASCII Hex Simbolo				
0 0 1 1 2 2	NUL SOH STX	16 17 18	10 11 12	DLE DC1 DC2	32 33 34	20 21 22	(espacio)	48 49 50	30 31 32	0 1 2
3 3	ETX	19	13	DC3	35	23	#	51	33	3
4 4	EOT	20	14	DC4	36	24	\$	52	34	4
5 5	ENQ	21	15	NAK	37	25	%	53	35	5
6 6	ACK	22	16	SYN	38	26	&	54	36	6
7 7	BEL	23	17	ETB	39	27		55	37	7
8 8	BS	24	18	CAN	40	28	(56	38	8
9 9	TAB	25	19	EM	41	29)	57	39	9
10 A 11 B	LF VT	26 27	1A 1B	SUB	42 43	2A 2B		58 59	3A 3B	
12 C	FF	28	1C	FS	43	2C	*	60	3C	<
13 D	CR	29	1D	GS	45	2D	,	61	3D	=
14 E	SO	30	1E	RS	46	2E	-	62	3E	>
15 F	SI	31	1F	US	47	2F	i	63	3F	2
64 40 65 41 66 42 67 43 68 44 69 45 70 46 71 47 72 48 73 49 74 4A 75 4B 76 4C 77 4D 78 4E 79 4F	ABCDEFGHIJKLMN	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F	P Q R S T U V W X Y Z [96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E	Simbolo a b c d e f g h i j k I m n o	112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127	70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F	p q r s t u v w x y z { {

No olvidar

Una cadena de bits por sí misma no significa nada

10001001


ج ج

No olvidar

Una cadena de bits por sí misma no significa nada

10001001

es la codificación usada la que le da sentido

Acerca de Creative Commons

- Ofrece algunos derechos a terceras personas bajo ciertas condiciones. Este documento tiene establecidas las siguientes:
 - Reconocimiento (Attribution):
 En cualquier explotación de la obra autorizada por la licencia hará falta reconocer la autoría.
 - No comercial (Non commercial):

 La explotación de la obra queda limitada a usos no comerciales.
 - Compartir igual (Share alike):

 La explotación autorizada incluye la creación de obras derivadas siempre que mantengan la misma licencia al ser divulgadas.

Más información: https://creativecommons.org/licenses/by-nc-sa/4.0/