

Presentación

Diseño Automático de Sistemas

José Manuel Mendías Cuadros

Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid

Profesorado

José Manuel Mendías Cuadros

Despacho 3.35 (Facultad de Informática)

o teléfono: 91 394 76 13

o e-mail: mendias@ucm.es

Web: www.dacya.ucm.es/mendias

www.fdi.ucm.es/profesor/mendias (alternativa)

- Tutorías (con solicitud de cita previa por email):
 - Lunes, jueves y viernes de 11h a 12h

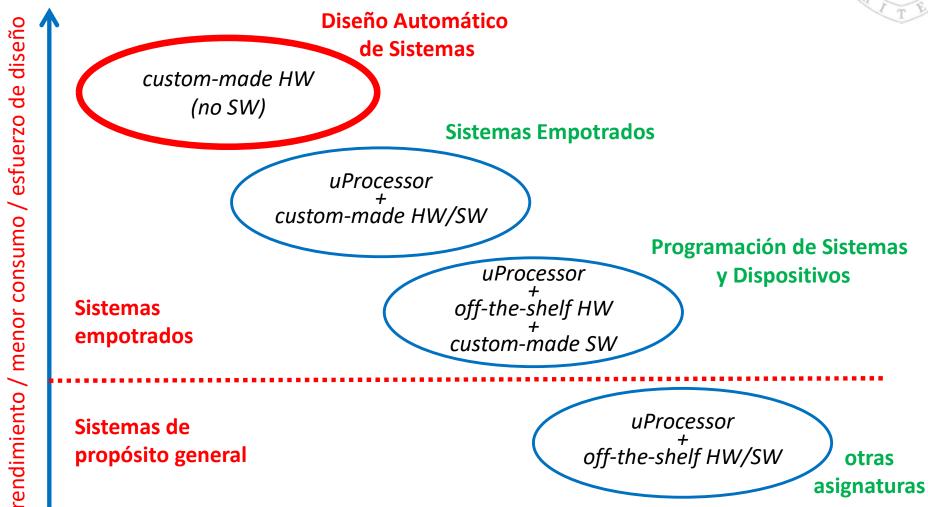
Objetivo y metodología

Objetivo:

- Capacitar para el diseño VLSI a nivel RT de circuitos integrados de propósito específico (ASIC) mediante su prototipado sobre FPGA.
- Haciendo énfasis:
 - Diseño reutilizable a nivel RT (Register-Transfer) basado en VHDL.
 - Diseño eficiente a nivel RT sobre FPGA
 - Uso de herramientas de diseño automático.

Metodología:

- Aprender practicando
 - Toda la teoría será aplicada en los laboratorios.
 - La experiencia facilitará la extrapolación de los conceptos a otros entornos.
- Trabajaremos con una FPGA concreta
 - Sin embargo, todo lo aprendido es extrapolable a otras tecnologías VLSI.


Prerequisitos:

Interés por el diseño hardware.

Sistemas digitales

alternativas de diseño

Contenidos

- En el curso 2023-24, se actualizó todo el material docente.
 - Se ha adaptado a nuevas placas de prototipado y herramientas de diseño.

	Tema	horas
1	Diseño automático de sistemas digitales	4
2	La placa de prototipado Digilent Basys 3	1
3	El entorno de diseño AMD Vivado ML	2
4	Especificación de sistemas digitales usando VHDL	6
5	Especificación usando VHDL'08	1
6	Especificación usando Verilog	1
	Modelos de especificación y diseño (incluidos en prácticas)	12

Prácticas:

- Diseño y prototipado de controladores hardware de dispositivos.
- Diseño y prototipado de sistemas digitales completos.

Dinámica de clases

- Asistencia obligatoria (mínimo 70%)
 - Más de 8 faltas de asistencia => NP en ambas convocatorias.
- Distribución de clases:
 - Jueves: Prácticas en laboratorio (50% de las clases) Lab 7
 - Viernes: Teoría (50% de las clases) Lab 9 / Aula 5
- Elementos evaluables:
 - o Prácticas: 50% de la nota
 - Defensa en horario de clase (último día: el último de prácticas en lab)
 - La nota aplica a ambas convocatorias (y se conserva de un curso a otro)
 - o Proyecto: 50% de la nota
 - Se defiende una vez el día del examen

Dinámica de clases

laboratorios

- Cada estudiante dispondrá de un laboratorio completo en casa:
 - Deberá traerlo a clase los días de laboratorio.
- La Facultad prestará el maletín Basys + periféricos durante todo el 1er. cuatrimestre:
 - Se recogerá a partir de la fecha indicada por el profesor en la sala de técnicos.
 - Se deberá devolver el día de defensa del proyecto.
- Cada estudiante deberá instalarse el entorno de desarrollo:
 - Nativamente sobre Windows/Linux, siguiendo las instrucciones del fabricante.
- De ser necesario, el entorno de desarrollo también está instalado en:
 - Los laboratorios de la Facultad.
 - Los puestos de la biblioteca.
 - Los portátiles en préstamo de la Facultad.

Prácticas valoraciones

	Laboratorios	Ptos
1	Lógica combinacional. Aritmética y acceso a dispositivos elementales de E/S.	0,25
2	Lógica secuencial. Lectura de señales asíncronas y módulos genéricos.	0,5
3	Máquinas de estados finitos (FSM). Acondicionamiento de las señales de reloj y reset asíncrono.	0,75
4	Validación e instrumentación. Comunicación serie síncrona por un bus PS/2.	0,75
5	FSM con ruta de datos. Comunicación con un terminal a través de un bus RS-232.	1
6	FSM con flags. Visualización en un monitor VGA.	1,25
7	Diseños no volátiles. Carga de configuraciones desde una Flash ROM.	0,25
8	Diseño con Block RAM. Interfaces alfanuméricos de vídeo.	1,25
9	FSM temporizadas. Interfaces gráficos de vídeo.	1,25
10	Diseños monociclo vs. multiciclo. Transmisión por bus IIS y procesado en tiempo real de audio.	1,5
11	Diseño con IP cores. Configuración de una cámara por bus SBBC y captura de vídeo.	1,25
12	Uso de funciones y procedimientos. Procesado en tiempo real de vídeo (opcional)	1,5

Los puntos por prácticas se ponderan por 0.5 en la calificación final

Distribución de clases

Enero 2025					Feb	rero 2	2025								
1	2	3	4	5	6	7						1	2		
8	9	10	11	12	13	14	3	4	5	6	7	8	9		
15	26	17	18	19	20	21	10	11	12	13	8	15	16		
20	21	22	23	24	25	26	17	18	19	20	21	22	23		
27	28	29	30	31			24	25	26	27	28				
Marzo 2025						Abri	il / M	ayo 2							
					1	2		1	2		4	5	6		
3	4	5	6	7	8	9	7	8	9	10	11	12	13		
10	11	12	13	14	15	16	14	15	16	17	18	19	20		
17	18	19	20	21	22	23	21	22	23	24	25	26	27		
24	25	26	5(7)	28	29	30	28	29	30	1	2	3	4		
31							5	6	7	8	9	10	11		

Presentación

DAS

DAS

10

Bibliografía

Diseño VLSI:

 Top-Down Digital VLSI Design: From Architectures to Gate-Level Circuits and FPGAs

H. Kaeslin Morgan Kaufmann, 2014

 Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication

H. Kaeslin Cambridge University Press, 2008

Diseño basado en VHDL:

 RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability

P.P. Chu Cambridge University Press, 2006

FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Version
 P.P. Chu
 Wiley, 2008

Bibliografía

Diseño Automático:

Synthesis and Optimization of Digital Circuits
 G. De Micheli
 McGraw Hill, 1994

Ingeniería VLSI:

- Digital Systems Engineering
 W.J. Dally, J.W. Poulton
 Cambridge University Press, 2001
- Digital Integrated Circuits: a Design Perspective Jan M. Rabaey, A. Chandrakasan, B. Nikolic Pearson Education International, 2003

12

Acerca de Creative Commons

- Ofrece algunos derechos a terceras personas bajo ciertas condiciones. Este documento tiene establecidas las siguientes:
 - Reconocimiento (Attribution):
 En cualquier explotación de la obra autorizada por la licencia hará falta reconocer la autoría.
 - No comercial (Non commercial):

 La explotación de la obra queda limitada a usos no comerciales.
 - Compartir igual (Share alike):

 La explotación autorizada incluye la creación de obras derivadas siempre que mantengan la misma licencia al ser divulgadas.

Más información: https://creativecommons.org/licenses/by-nc-sa/4.0/